Thoroughbred® OPENworkshop™
Reference Manual

THOROUGHBRED

eoftfarare culernwalianal, cac

Version 8.8.3

46 Vreeland Drive, Suite 1 « Skillman, NJ 08558-2638
Telephone: 732-560-1377 « Outside NJ 800-524-0430
Fax: 732-560-1594

Internet address: http://www.tbred.com



Published by:

Thoroughbred Software International, Inc.
46 Vreeland Drive, Suite 1

Skillman, New Jersey 085588-2638

Copyright © 2021 by Thoroughbred Software International, Inc.

All rights reserved. No part of the contents of this document
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Document Number: OW8.8.3M101

The Thoroughbred logo, Swash logo, and Solution-1V Accounting logo, OPENWORKSHOP, THOROUGHBRED, VIP FOR
DICTIONARY-IV, VIP, VIPImage, DICTIONARY-1V, and SOLUTION-IV are registered trademarks of Thoroughbred
Software International, Inc.

Thoroughbred Basic, TS Environment, T-WEB, Script-1V, Report-1V, Query-1V, Source-1V,

TS Network DataServer, TS ODBC DataServer, TS ODBC R/W DataServer, TS DataServer for Oracle,

TS XML DataServer, TS DataServer for MySQL, TS DataServer for MS SQL Server, GWW Gateway for Windows,
Report-1V to PDF, TS ReportServer, TS WebServer, TboredComm, WorkStation Manager, FormsCreator, T-
RemoteControl, Solution-1V Accounting, Solution-1V Reprographics, Solution-1V ezRepro, Solution-IV RTS, and
DataSafeGuard are trademarks of Thoroughbred Software International, Inc.

Other names, products and services mentioned are the trademarks or registered trademarks of their respective vendors or
organizations.



INTRODUCTION

OPENworkshop is the Thoroughbred Object-oriented Development Environment. It features new
concepts that change the way developers build business software.

OPENworkshop offers:

e Much lower development and maintenance costs

e A much more flexible system for users

e The choice of both Character and Graphical interfaces
OPENworkshop is based on simple concepts:

e Objects and attributes

e Wholes and parts

e Classes and members

Operating System Support:

UNIX, Linux, OpenVMS, and Windows
For specific information, please contact your Thoroughbred Sales Representative.

Object Technology

Obiject Technology began development in the early 1980's. Founded on research designed to maximize
the re-usability of software, Object Technology (OT) creates Objects that reflect real-world entities, and
Methods that implement the way Objects behave.

As is often the case, this new technology has taken a long time to get to market. Two fundamental
problems impeded its deployment in practical business applications: hardware costs and the lack of
suitable software infrastructures.

Object Technology demands more memory and processing power than traditional software development
environments. The cost differential has been large enough, until recently, for end-users of business
applications to avoid OT-based solutions. Today, much better price/performance values are available
from hardware suppliers.

True Object Technology is rigid and inflexible when developing Transaction types of applications. For
this reason Thoroughbred’s OPENworkshop is defined as “Object Oriented”. Object Oriented provides
the flexibility in developing applications for “real world” business applications, by allowing the Object
Rules to be modified and enhanced when needed to satisfy application requirements. Most available OT-
based systems are usually Object Oriented because of this flexibility.

1
Copyright © 2021 Thoroughbred Software International, Inc



Enormous development efforts have been put into operating systems and utilities over the history of
commercial computing. They have combined to create a wealth of resources available for application
developers to use in their solutions. Early attempts to deliver OT-based development environments
ignored these resources in a drive to overturn traditional architectures. Now, mainstream environment
developers have found ways to deliver Object Technology while leveraging on the available
infrastructures.

As a result, practical OT-based solutions are now deliverable, and we can expect to see significant market
growth as the “early adopters” consolidate their positions.

Thoroughbred Mission

Thoroughbred's formal Mission is to provide the most highly portable language development
environments for developers creating end-user business applications.

The word “Portable” has been used widely in the software industry, and people attribute many different
meanings to it. Thoroughbred itself has two distinct developer requirements in mind when committing to
portable language development environments.

Firstly, developers wish to be able to design an application for their chosen markets once, and then
implement it on many different hardware and software environments, depending on their own customer's
needs and preferences. Thoroughbred‘s mission is to deliver this portability, allowing the developer to
maintain only a single application code set.

Secondly, developers have invested heavily, designing applications for the end-user business market, and
need to be able to conserve that past investment. Changes in technology, costs, and the competitive
environment will drive them to adapt and enhance their applications, but Evolution, rather than
Revolution, is the preferred strategy. Thoroughbred takes responsibility for enabling developers to choose
this strategy. Ten, or even five years ago, it was possible to deliver the Evolution capability by
guaranteeing upward portability in the programming language.

More recently, demands for evolution have become more complex. Evolution requirements include the
enhancement of the user interface of their application to support graphical presentation (GUI), or the data
environment to encompass Client/Server architectures. Thoroughbred's solution to this level of portability

is based on the Dictionary-1V system dictionary. Thoroughbred guarantees that all applications based on
Dictionary-IV will operate without change in all environments supported by Thoroughbred.

Positioning OPENworkshop

OPENworkshop is an Object-oriented development and run-time environment encompassing
Thoroughbred’s three-tier environment.

OPENworkshop Features:
o Data controls the application
o Applications can be developed incrementally

e Relational Integrity is maintained and insured

2
Copyright © 2021 Thoroughbred Software International, Inc



e Can modify Object Rules

e Global Definition-based

e GUI and Character Applications with same Program Code

o Client/Server or Local Host-based Applications

¢ Internet Transaction Processing

o Window, UNIX, Linux, or DEC VMS is supported

e Thoroughbred, ORACLE, VMS, and a variety of ODBC databases are supported

OPENworkshop provides the tools to develop mission critical applications for a variety of business
requirements and system configurations.

Most of the major relational database vendors have developed or are developing Object-oriented products.
In addition to these suppliers a new set of ventures are attempting to develop new Object-oriented
products from scratch, using entirely new architectures. OPENworkshop is an evolution of
Thoroughbred’s Dictionary-1V, and builds on the portability of previous Thoroughbred development
products.

OPENworkshop provides support for enterprise-wide, distributed Object databases as well as local, host-
based systems. Thoroughbred has always had a policy to make its development environments open for its
developers. As these new products become established, Thoroughbred will enable developers to take
advantage of them.

OPENworkshop supports an Object-oriented Programming environment. Built to support Windows
clients and UNIX/Linux Servers running either Thoroughbred’s robust database or Relational Databases
including ORACLE and most ODBC compliant databases including Informix, Sybase, and SQL server.
OPENworkshop enables the application designer to define and use the most appropriate database for the
application rather than being limited to a proprietary database or limited third party databases. Each
Format definition can have its own database support.

OPENworkshop provides support for developers wishing to use a graphical user interface (GUI) on a
client workstation. Thoroughbred's VIP provides a Graphical User Interface to the application without
requiring changes to the application’s code.

OPENworkshop is a highly portable Object-oriented development environment for developers creating
end-user business applications. It embodies Object Technology and delivers the benefits. It is based on a
time proven system engine. It uses and supports components that Thoroughbred has developed and
refined for many years, while at the same time introducing many new features.

Deliberately, OPENworkshop is not a break with the past, but a path for evolution to the future.

3
Copyright © 2021 Thoroughbred Software International, Inc



Object Technology Concepts

Object Technology embodies key concepts that combine to deliver its benefits. Extensive technical
literature! is available on the subject, but the following provides a summary of the concepts and an
introduction to how OPENworkshop delivers them.

Superclass Data
Attributes

Encapsulates i
Inheritance p/' Operations
Classifies
Class Type of
Inherits from ) Operation

| Operates on
' via Methods Method

\J

Contains

Stored Directives.
Persistence Polymorphic

Data & Other

Object

Is any thing, real or abstract, about which we store data and those operations that manipulate the data.
(James Martin)

OPENworkshop allows the developer to store information that reflects the properties of real world items
in Data-names. The operations that may manipulate the data are defined in Methods and are associated
with the Data-name.

Class

A collection of objects, which share common attributes and methods.

(lan Graham)

! See bibliography for a small sample

4
Copyright © 2021 Thoroughbred Software International, Inc



In OPENworkshop Classes define a collection of Objects. Classes themselves are collected into sets with
common structures or behavior. For example, all Views in OPENworkshop have similar behavior.
Method

An implementation of an operation. Code that may be executed to perform a requested service. Methods
associated with an Object may be structured into one or more programs.

(Object Management Group)

OPENworkshop Methods perform operations on Data-names. Some specific types of operation are
identified for particular support by OPENworkshop, including:

e Pre- and Post-Processing Methods prepare an Object for modification by the end-user and validate the
data afterwards.

e Insert Methods assist in creating a new Object.

o 1/O triggers validate the database and ensure that updates are performed consistently.

Inheritance

The construction of a definition by incremental modification of other definitions.

(Object Management Group)

In OPENworkshop all Classes are created and modified incrementally, and any definition created is
interpreted consistently wherever it is referenced. OPENworkshop Formats and Links are used to collect
these definitions together.

Encapsulation

Avre the results (or act) of hiding the implementation details of an Object from its user?

(James Martin)

An Object may CONNECT to another OPENworkshop Object, and allow it to perform the operations it
needs. When it has finished, it may return a value.

It is the combination of these concepts that allows developers to reduce application development and
maintenance costs.

Polymorphism

The ability to use the same expression to denote different operations.

(lan Graham)

5
Copyright © 2021 Thoroughbred Software International, Inc



An expression or message can operate on Objects of different Classes. This type of re-useable code
greatly reduces development and maintenance costs.

Recursive

Obijects can send messages to their own Methods recursively or send messages to themselves.

(lan Graham)

The ability to interrupt an action to undertake another action or subroutine, and then to interrupt this again
with the same subroutine and so on. For the Thoroughbred Environment this is equivalent to Public
Programs.

Persistence

The property of an object by which its existence transcends time.

(Object Management Group)

The value of data remains after the Class or Method that created it no longer exists. An example is Data
Objects that can be stored in files, which is the ultimate form of persistence.

OPENworkshop System Concepts

Traditional software architectures are hierarchical in design, driven by a number of programs. Typically,
users can select a program from a set of choices on a menu. Programs engage in a dialog with the user
through data input screens, and may display data in lists and tables. The application program controls both
the dialog with the user and the maintenance and updating of data items.

OPENworkshop redefines the relationships between data and program code, and between application
designer and application user. Developers using OPENworkshop must design their Data Objects first, and
then associate “Methods”, which are independent modules of program code, with data items.

Because individual data elements control their own code, OPENworkshop eliminates any concept of a
MAIN program. In place of a control structure that is imposed on the user through menus and escape
keys, (all of which must be designed and planned for by the developer), OPENworkshop provides
CONNECT directives, pop-up menus and user interface support that allows the user to control the
dialogue with the system.

6
Copyright © 2021 Thoroughbred Software International, Inc



PRODUCT

CUSTOMER

INVOICE

INVOICE
ADDRESS

INVOICE DATE

DELIVERY DATE

UPDATE,. s
QUANTITY ALES. sTATI571Cs

In OPENworkshop the data controls the application code, not the other way around. The system
architecture enables the developer to partition the application code into Methods associated with Objects.

Because Objects are then packaged with their Methods, they are easy to re-use. Previous work is
immediately available to use when creating other Objects with similar properties. Future modifications
are automatically reflected in all places where the Object is used.

These benefits are important during initial application design, but even more important during the much
longer maintenance life of an application.

The User Interface

OPENworkshop Presentation Classes (View, Screen, Menu, Report, Query, and Help) are used by
developers to implement the user interface for the application. These are described in more detail later,
but the OPENworkshop user interface contains some important features that are highlighted below.

Navigating through an OPENworkshop Application

OPENworkshop offers a user interface model that is quite different from traditional menu-controlled,
form-oriented data processing systems. It is important that you gain a clear understanding of the
flexibility and benefits that OPENworkshop offers the user at an early stage. The sample application
delivered with OPENworkshop will give you an opportunity to try it for yourself.

The OPENworkshop user interface begins with the view. The view is used as the primary display while
an OPENworkshop application is running. Traditional systems begin with a menu or screen.

As in a spreadsheet, a view presents information in rows and columns. It is a form of presentation that is
dense in information, and highly flexible.

7
Copyright © 2021 Thoroughbred Software International, Inc



= » Customer File <

Cust Customer i Dizcnt||
Code Cuzt Sales| Cantact Customer Name Cd |Salez Rep Mam | Custarmer City | St Z[|
100100  15827.00| Tex Rogers Toot-vour-Haorm AF Albert Fisher Port Lavaca  Te 30000
100101 16253 36| David F.elly Fis-bd-Lip HF 'Hermp Phelp: | Seadiift Tw | 3200 j
100102 |  16628.04Sue Thompson | Computer Ihc. JJ o Joe Jones tadizon MJ o 34.00
100103 [ 16951.04{Fobert Brock | Today's Company [JS  Jack Sulephen  Brdgewater MJ | 36.00
100104 | 17222 36| Sarah Smith ACME Inc. AF Albert Fisker Drayton M| 3800
100105 [ 17442000 alter Snider | Lumber |hc. HF 'Henm Phelp:  BigHom WD | 40000
100106 |  17609.96|Dennis Gohlke |0OK Development  |J)  Joe Jones Port Lavaca  Tw | 42.00]#*
« | [+

|[S ales representative] <F1> Report By Salez Rep] <F2» Digplay zales rep view

The view shown above gives information about customers and their orders. It could be considered to be a
starting point for anyone concerned with processing orders.

The view allows users to explore information throughout the system. In the view shown above, select
Report (F1) while in the Sales Rep column to produce a report of sales by Sales Reps. Alternatively,
select Display Sales (F2) to display information about Sales by Sales Reps.

Users can chain from view to view almost without restriction. Select Close (F4) to return to the previous
item.

Developers can make other classes available through select functions. Pop-up menus, screens, reports and
gueries, and more views can all be associated with select functions for any column.

Many of the above effects can also be achieved through other development environments. The difference
is the ease with which the OPENworkshop developers can create this level of flexibility, without losing
control of the integrity of the data managed by the application.

The following are some of the rules that an OPENworkshop user can rely upon when working within a
view:

» Ifyou can see it, you can find out more about it.

The Customer Sales column gives the total sales to the customer. Move the cursor to that column,
select Invoice Detail and OPENworkshop opens a view showing details of all invoices.

» If you can see it, you can change it.

The user can modify the data within any of the fields displayed in a view, provided the developer has
allowed it. When the data is changed, methods and triggers ensure that all other related files are also
modified appropriately. OPENworkshop can control these modifications, ensuring that only valid
values are entered. Data validation can be as simple or complex as needed.

« If you can't see it, it won't take long to find it.
With OPENworkshop the developer does not have to carefully predict where a user may wish to go

next from any screen or menu option. The environment makes it easy for the developer to open doors
to views, and it deals with data consistently, without having to close and open programs.

8
Copyright © 2021 Thoroughbred Software International, Inc



» If you have to go do something else, everything will still be here when you come back.
Partway through entering a sales order you may need to go and attend to an outstanding invoice.
OPENworkshop not only lets you do this, but it preserves the entire context and restores it when you
return, without the developer having to make specific arrangements to allow it.

* You'll wonder how you did without it.
A system that begins with the view is unconventional at first. We are too used to the rigid control that
menus imply. Use the system for a day or so, and you will see the advantages it offers.

Mix both Character Terminals and Graphical Workstations

OPENworkshop offers a unique choice for the physical presentation of these Classes. The user may be

equipped with a character terminal or a graphical workstation. Graphical workstations are PC-based

workstations running a Microsoft operating system.

Also all of these options can be mixed in a single application site, with a single set of code.
OPENworkshop manages the communication with the specified user interface device as appropriate.

It would not be uncommon to implement a business system on OPENworkshop with a mixture of
character terminals and graphical workstations.

Views

A View presents information in rows and columns. Like a spreadsheet, it is a form of presentation that is

dense in information, and highly flexible. People naturally relate to this layout, once they see how flexible
itis.

Customer File

Cust Code|Cust Sales|Customer Contact|Customer Hame
100100 JEEEENII Tex Rogers Toot-Your-Horn

AF

Port Lavaca

100102 16253.36 David Kelly Fix-M-Up 4 Madison >

100103 16628.04 Sue Thompson |Computer Inc. J5 Bridgewater |MJ

100(— - =y A

100 In¥ Number |P F |Invoice Date|Cust Code|Sr Cd |Invoice Tot Amount |C M|+ D | |

190/ 400001 09/03/95 100100 AF 241.93 e
000012 09/14/95 100100 AF =2
000023 09/25/95 100100 AF __ 5564.32

00— oice deta v |
lllinv Number [Ln Nm [Cust Code [Sr Cd[item Code |ltem |Price|Tax |Dsent % [U P [+
0000 o 100100 AF  10-100-000 1.40 16.801.18 30.00
000012 02 100100 AF  10-100-010 3.50 42.002.94 30.00
0oooi1z2 03 100100 AF 10-100-020 4.20 50.40 3.53 30,00
000012 04 100100 AF  10-100-030 560 67.204.70 30.00
000012 05 100100 AF  10-100-000 5.60 67.20 4.70 30.00

NEIDCIE >,

*]

The Views shown here give information about customers and invoices.

The Views allow the user to explore information throughout the system. As the user moves around, options
for action are presented. If the user is operating a character terminal, options are associated with Function
Keys, and the options available are described on the top line of the display. On a graphical workstation,
options are displayed as a list, and may be selected using the mouse.

9
Copyright © 2021 Thoroughbred Software International, Inc



OPENworkshop allows the developer to specify a different list of options for each column. Thus the options
can relate directly to the Data Object currently highlighted.

Screens

= Customer File

Customer Code_:

Company Mame.:

|Tnnt-Yuur-lInrn

Contact: |Tex Rodgers
Address.: | %22 First Street
City.: | Port Lavaca |
O —
Phone.- |212 685-2241

Credit Limit Discount:

Sales.: [15827.00 | [3304936 |
Sales Rep.: |!LI-' | |Alhert Fisher

Comments._: 'EEEIH
i

In contrast to a View, an OPENworkshop Screen presents information for one instance of a data set at a
time, set out as a form. This layout is used to collect or display detailed information where numerous
collections of data are shown simultaneously.

A Screen supports the same Pre- and Post-processing options as a View, and therefore allows the user
identical flexibility to move to other Classes, modify or lookup data, and return.

Menus

OPENworkshop offers the developer a number of menu types. The simplest option is the classical “list
of options from which to choose.

A Selection Menu allows you to scroll through a list and make a selection. The parameters associated
with the selection pass to a Method.

A Matrix Menu displays options in a matrix. The user moves the highlight to the required cell in the
matrix, and then selects it. This form of presentation can significantly reduce the number of layers of
Menu required in many applications.

Help
The Help system allows the developer to build Help into all levels of the user interface. At each step,

Help can be displayed as a simple instruction, or a menu of levels. The Help system also supports a
Subject Index, which the user can use to seek help by using keywords.

10
Copyright © 2021 Thoroughbred Software International, Inc



For Developers with Dictionary-IV Experience

If you are experienced with Thoroughbred Dictionary-1V, you will already be familiar with many of the
classes that OPENworkshop provides. Be prepared, however, to revise the way you think about these
classes and the way you use them to build a system.

OPENworkshop is an object-oriented development environment. It features new concepts that
dramatically change the way developers build business software. It also allows developers to retain their
past investments in software based on Thoroughbred programming environments.

OPENworkshop operates under Dictionary-IV. It uses links, formats, views, screens, and other
Dictionary-IV features to define and control its operation. It supports Report-1V and Query-1V reports and
gueries. While OPENworkshop implements extensions to Dictionary-IV that support Object Technology
concepts, it continues to work with those previously defined classes.

OPENworkshop is supported by the Script-IV and Thoroughbred Basic programming languages. Much
existing code can be retained when an application is transformed into the OPENworkshop environment.
The most surprising difference is the amount of code that can be thrown away because it is no longer
needed.

OPENworkshop extends the capabilities of Dictionary-1V and adds some new directives to Script-1V.
Most existing applications can be adapted to work in OPENworkshop, but some changes will be required.

OPENworkshop offers the benefits of reduced development and maintenance costs, even compared with
Dictionary-I1V based development. It also offers a much more flexible user interface. Some further
benefits include:

e Pass control anywhere at any time
Dictionary-IV provides a hotkey facility that provides access to screens, views, reports, queries, and
menus. This facility is greatly enhanced in OPENworkshop by a CONNECT method-type capability.
You can provide access to any method from anywhere in the system.

* Re-entrance
The new structure based on objects and methods, (as opposed to programs and data), has significant
implications in the area of re-entrance. It removes most barriers and also takes responsibility for
management of the run-time context away from the developer. An OPENworkshop application can
allow users to create a new invoice while they are processing an existing invoice. The developer has
to take no special action.

* Interactive debugger

A powerful interactive debugger is provided, together with a global dictionary map and many
where-used views that show where data element names are defined and referenced.

e Structured help

The help system has been extended to allow help to be grouped and categorized, and accessed
through a Help Topics subsystem.

11
Copyright © 2021 Thoroughbred Software International, Inc



OPENworkshop Classes and Methods

PRESENTATION
CLASSES

An OPENworkshop application is built using Data Classes, Presentation Classes, and Methods.
CONNECT directives are used to invoke instances of a Class.

Data Classes

Data Classes hold the application data. From the point of view of the application developer the most
important Classes of Object are:

Data Element Name  Defines an item of information, together with its attributes. A Data-name
definition also specifies Methods to be used whenever the data item is
created, displayed, or amended.

Format Collects together a set of Data-names that will be stored together in a
single table in the OPENworkshop table or file system.

Link Specifies the physical files or tables that will be used to store a Format
and associated key indexes. It also specifies default Presentation Classes
(View and Screen) to use to display the data and allow it to be edited.
Specifies the Trigger Method to be used when any data in the Link is
updated to ensure that Referential Integrity is maintained throughout the
system. Specifies if AES256 bit strong encryption should be enabled for
Auto-Expanding Direct files.

Library Collects together all the Classes relevant to an application or subsystem.

Presentation Classes

Presentation Classes display or print information for the application user to read or edit. They also allow
the user to select subsequent actions.

12
Copyright © 2021 Thoroughbred Software International, Inc



View Displays data items, in spreadsheet form, as a table of rows and
columns. Each column represents a different Data-name. Each row
represents a record. Where there is more information than can fitin a
window, vertical and horizontal scrolling is provided.

Views display information from a single Link, and from multiple
joined Links combining data items. Views can also display calculated
values.

Views allow the displayed data to be modified, and rows to be added to
or deleted from the file or table being displayed. They also allow users
to “drill down” or explore related information.

Screen Displays data items as a “form”. Allows the data to be modified and
records to be added to or deleted from the file or table being displayed.

Message Displays a message and allows limited user input in response.

Report and Query Provides output to a printer or terminal as formatted reports containing
application data and, if required, calculated values.

Menu Presents a set of options for the user to select. Menus can be presented
as a simple list or as a matrix of options.

Help Displays context-sensitive Help.

Methods

Methods contain the program code that performs the logic of the application. In an OPENworkshop
application all program code is organized into Methods, each being associated with specific user actions
or system functions.

View Method

Called whenever a View is preparing a row to display. Ensures that all data items required for display are
available, and calculates any values required by the View.

Pre-Processing Method
Called whenever a View or Screen is preparing to allow a user to edit a data item.
Post-Processing Method

Called whenever a View or Screen has completed editing a data item. May be used to provide complex
data validation or to modify related data items in the current row, for example.

13

Copyright © 2021 Thoroughbred Software International, Inc



Insert Method

Called whenever a View is required to add a new row. Can be used to set initialized values or to verify
that the addition of a new row should be allowed.

Link Trigger Method

The Link Trigger Method is defined in a Dictionary-1V Link definition as the Link 1/0O Trigger. Called
whenever a record in a file is to be updated. The Trigger Method is responsible for ensuring that the Data-
names are being updated according to application rules and that any associated data will also be updated
appropriately. Trigger Methods are the means by which OPENworkshop applications ensure that
Referential Integrity is preserved throughout the application.

File Suffix Method

Builds up a file suffix. Is used to manage files in directories.

After Read Method

Called whenever a record has been read by a Screen. Prepares the record for display or editing.
Application Method

Implement the Application logic. Users can initiate a Method by selecting the appropriate option from a
menu. Methods can also call other Methods. Such Methods may be designed to perform any purpose the
application designer needs.

Startup Method

Called when the application begins. The OPENworkshop Start Method is defined at the operator code
level.

View Color Method

The SetColor Method can be used to dynamically control view colors at runtime. For example, it is
possible to have all negative numbers in a column displayed using white text on a red background.
Background and foreground colors can be set for a cell, a column, a range of columns, a row or a
range of rows.

If you are running with VIP enabled please refer to the VIP for Dictionary-1V manual, Views, Dynamic
View Colors.

The user defined View Color Method name is passed to the View class when performing a CONNECT
VIEW. The View class will execute the View Color Method when moving off a column or moving off a
row. The View Color Method then constructs the appropriate color parameters to be applied to the view
by the View class. The View Color Method must pass the color parameters to the View Color API for
parsing. The View Color API will interpret the supplied color parameters and generate compact syntax
that is in turn processed by the View class.

14
Copyright © 2021 Thoroughbred Software International, Inc



The following diagram illustrates the process flow when using a View Color Method:

Host application code invokes the View
class supplying the user defined View
Color Method name

A 4

The View class calls the supplied View
Color Method

View Color Method exits
returning generated view

A 4

The View Colo_r Methoo_l calls the View color syntax to the View
Color API passing the view color > class for processing
parameter \

v View Color API exits
The View Color API generates the returning generated view
appropriate view color syntax for the » color syntax for the View
View class class

View Class SetColor Method Name Syntax
SETCOLOR METHOD=method-name
SETCOLOR METHOD Required syntax.
method-name The name of the method to be executed. Pass the View class the View Color

Method name in VIEW$[29]. For more information about VIEWS$[29] see the OPENworkshop
Manual.

15
Copyright © 2021 Thoroughbred Software International, Inc



View Color Method CALL/ENTER List

METHOD VS$[ALL],VCOLR$[ALL],LNKS$[ALL]

V$[x,y] View Class Array Supplied by the View Class

[0,0] |(1,1) | Length of column attribute entry.
(2,1) | Number of view used column.
(3,1) | Number of view deleted columns.
(4,1) | Number of view heading rows.
(5,n) | New column id and column number string.
(6,1) | New column number.
(7,1) | Next new column id.
(8,1) | Next new column number.
(9,n) | ncolumn id & n column number.
[0,1] | (1,1) | Column window address (column).
(2,1) | Column window address (row).
(3,1) | Column width.
(4,1) | Column dataname number. $00$ implies new column.
(5,1) | New column id.
(6,n) New column data (build by view_method). V$[0,n](6) will be displayed by the
view CLASS when the next row is printed. V$[0,n] Same as V$[0,1]

VCOLR$[ALL] View Color Array

[0] API returns "." when no errors else returns one of the following error codes:

"100" | Not enabled

"101" | Supplied parameters invalid

"102" | Supplied function requires supplied color parameters
"103" | Supplied row and column parameters invalid

"104" | Supplied row range invalid

"105" | Supplied column range invalid

"106" | Supplied cell range invalid

"107" | Supplied foreground color invalid

"108" | Supplied background color invalid

16
Copyright © 2021 Thoroughbred Software International, Inc




The content of [0] is used by the view class to determine how it should process colors. Upon
returning from the view color method:

If VCOLR$[0]="." AND VCOLRS$[3]<>"" the view class will assume a valid color command
string was built by the API and will apply it.

If the above conditions fail the view class will build a command string for this row to apply the
default view colors.

[1] Column, row information supplied by the View class

(1,3) Current column number, 1 based.
(4,3) Current row number, 1 based.
(7,3) First data row number, 0 based.
(10,3) | Last data row number, 0 based.

[2] Color parameters built by the View Color Method, passed to the color API.

(1.1)

Mode:
"S" Set color parameters supplied in VCOLR$[2]
"R" Reset entire view back to default colors

(2.3)

Starting column number, 1 based. "999" to change all columns in the starting
row (5,3 ). "998" for the current column in the view.

When VCOLR$[2](1,1)="S” color parameters in bytes 5 through 61 must be
supplied.

Multiple color parameters are supported. When supplying multiple color parameters,
each set must be padded to 30 bytes.

(5.3)

Starting row number, 0 based and include heading rows, must be
>=\VCOLR$[1](7,3) and <=VCOLR$[1](10,3). “999” to change all rows for
the column specified in (2,3). "998" to change the current row.

(8.3)

Ending column to define a range. "999" to change all columns in the ending
row. " " no ending column.

(11,3)

Ending row to define a range must, be >=VCOLR$[1](7,3) and
<=VCOLR$[1](10,3).

"999" to change all rows in the ending col.
" " no ending row.

Note: When both ending column and ending row are " " the starting column
and row values are applied to the ending column and row values.

(14,9

Foreground color, Basic color keyword padded 9 bytes

(23.9)

Background color, Basic color keyword padded 9 bytes

(32,30)

Next set of color parameters

17
Copyright © 2021 Thoroughbred Software International, Inc




Color values can be supplied using one of two notations:

e BASIC color keywords, keywords are not case sensitive.
e RGB hex notation is supported to provide greater color granularity.
The format is:

#rrggbb

where:

# is required syntax

rris ared value

gg is a green value

bb is a blue value

For example: #ffOOff

When neither a foreground nor a background color is supplied the view default colors are
applied.

VCOLR$[3] SetColor command string built by the API and returned to the View Color
Method. This string must be returned to the View class.

LNKS$[ALL] - See link array in the OPENworkshop manual.

Example Call View Class

METHOD MSGX$[ALL]

Call View Class with a View Color Method name.
PROCEDURE
DIM VT$[29];
VT$[1]=""0OEVCUST",
VT$[29]=""SETCOLOR METHOD=OEVCOLOR";

CALL "O03A™",VT$[ALL];
GOTO CUEXIT

Example View Color Method (OEVCOLOR):

METHOD VS$[ALL], VCOLR$[ALL],LNKS$[ALL]

This method (OEVCOLOR) is called by the View Class.

18
Copyright © 2021 Thoroughbred Software International, Inc



PROCEDURE
FORMAT INCLUDE #OEFCUST,OPT="NONE":

1 By default if VCOLR$[3] does not return to the view class a color command.
string, the current row will be initialized to default view colors. It
is not necessary to reset row colors back to defaults.

1 When CUST-CODE is 100101 display entire row using white on magenta:

IF #OEFCUST.CUST-CODE = "100101"
VCOLR$[2]=:+

If row is customer code 100101
Set color parms:

''999"'+ ! all cols in this row +
VCOLR$[1](4,3)+ ! this row number +

" T+ ! no ending col (range) +
" Y+ ! no ending row (range) +

PADC"WHITE™,9)+
PAD(""MAGENTA™,9)

foreground color +
background color

FI;

enidf

The next examples perform a test on a column basis, regardless of the
current column. This code is an example of how to determine which column
in a view contains what data element name. In most real-life cases, this
is not necessary, the format entry number in the view array is sufficient.
This is simply an example if this type of logic should be required.

I When CUST-SALES > 15,000 display that column in this row using
1 black on yellow

IF #OEFCUST.CUST-SALES > 15000 I If cust sales > 15000
FX$=""#OEFCUST"; ! Set format name
FOR V=1 TO NEA(''V$",2); L Loop through data elements
EN=DEC(V$[0.,V](4.1)), ! Get format entry nbr
DN$=ATR(FX$,EN,21); ! Get its data name

IF CVT(DN$,128)=""CUST-SALES"! If its the right one
VCOLR$[2]=:+ 1 Set color parms:
STR(V-1:""000"")+ 1 this col +
VCOLR$[1]1(4,3)+ ! this row +
" "+ 1 no ending col (range) +
" "+ 1 no ending row (range) +
PAD("'BLACK",9)+ 1 foreground color +
PAD(*'YELLOW",9), 1 background color
V=NEA('V$",2)+1 ! Force end of loop
1 endif
1 Next data element in format
I endif

FI;
NEXT V
FI;

! When SR-CODE=HP print both the SR-CODE and sales rep name (<Ax>) using
I light green on blue. This uses a column range to set the color of two
I consecutive columns.

19

Copyright © 2021 Thoroughbred Software International, Inc



IF #OEFCUST.SR-CODE=""HP"

FX$="#OEFCUST"";

FOR V=1 TO NEAC'VS$",2);
EN=DEC(V$[0,V](4,1)),
DN$=ATR(FX$,EN,21);

IF CVT(DN$,128)=""SR-CODE"

VO$=V$[0,0],
EL=ASC(V0$(1,1)),
NC$=VO$(EL),
NC=POS(""A"=NC$,2);

IF NC

CN=ASC(NC$(NC+1,1))

FI;

VCOLR$[2]=:+
STR(V-1:"'000"")+
VCOLR$[1](4,3)+
STR(CN-1:""000"")+
VCOLR$[1](4,3)+
PAD("'LGREEN",9)+
PAD(*'BLUE",9),

V=NEA(''V$",2)+1

Fl;
NEXT V

FI;

If sales rep is H
Set format name
Loop through data elements
Get format entry nbr
Get its data name
IT its the right one
Get col attr string
Get len of col attr entry
Get "new col A<x>" string
Scan for new col "A"
IT found rep name

Get rep name col nbr

endif
Set color parms:

this col +

this row +

ending col (name) +
this row +
foreground color +
background color

Force end of loop

endif
Next column

endif

* Call APl to construct the set color command string required by view class

IF LEN(VCOLR$[2])>1
VCOLR$[2]=""S"+VCOLR$[2] ;

CALL

FI;

""003AVO1",VCOLR$[ALL],
VS[ALL]

* Will exit back to view processing with

GOTO CUEXIT

IT have something
Set APl function: set colors
Call API, color array,

endif

view array

VCOLR$[3] built for the view class.

System Options

Help Debug

Code |Cust Sales

Customer
Contact

Customer Namne

Sales Rep

Phone Nuber |

100100J15527.00

0010 1 pRapegaieiipey

Tex Rogers
Dawid Eelly

Toot-Four-Horn
Fix-M-Tp

Alhert Fis

512 685-2341

100102|16625 .04 Zue Thompson Computer Inc. JJ|Joe Jones |201 &631-7500)
100103|16251.04 Robert EBrock Today's Company| JZ| Jack Sulep|201 9537-1200
10010417222 .36 Sarah Swith ACHME Inc. AF|ilbert Fis|e0S8 S564-3200]
10010517442 .00 Walter 3nider |Lumber Inc. 701 632-5400
10010617609 .96 Dennis Gohlke |OE Development |JJ{Jos Jones (324 957-4500
10010710310.16 John Dworacezyk Memory Lanes J3Jack Zulep| 512 786-3210(

R ERE

[T

O

20
Copyright © 2021 Thoroughbred Software International, Inc



Screens - Introduction

Unique to screens is the ability to use default or custom graphical screens. For both graphical screen
types, any change made to the corresponding character screen definition will be reflected in the graphical
screen. All VIP clients will present a graphical screen based on a common character definition on the
host. For better performance, the graphical screen is cached on the client. Each time a screen is invoked
the host will compare the last change date and time and language code to the graphical screen cached on
the client. If these do not match and a custom screen exists on the host, the custom screen will be
downloaded and cached on the client. If these do not match and a custom screen does not exist on the
host, a new default screen will be generated and cached on the client.

Control Types

Both default and custom screens will create control types based on the data element attributes as defined
by the format.

Standard input fields will be collected using a text box control.

Calculated (formula) fields will be displayed using a text box control using special foreground and
background colors. See Special Field Colors later in this section.

Security fields will be displayed using a text box control using special foreground and background
colors. See Special Field Colors later in this section.

Text fields will be displayed and edited using a graphical text editing control.

Valid Value lists will be displayed and selections collected using a ComboBox control. Clicking on
the ComboBox button will display a drop down list containing a list of valid values.

Context Menus are automatically generate for all fields. A right mouse click on the active field will
display a context menu. This menu displays options based on the attributes of the data element as
defined by the format definition. For more information on data element Context Menus see the Views
section of Creating Graphical Presentations.

In addition to the above, custom screens support button controls and image controls. Please see the
Screens-Custom in a following section.

21
Copyright © 2021 Thoroughbred Software International, Inc



The following image is an example of a default graphical screen with a ComboBox control used for
processing the Valid Value list defined for the Terms field.

EH Sample Customer File

06,/06/03

‘# Thoroughbred Software International,Inc. t155i:44:%

Customer Code [gog1

Customer Nawe (fsrren Baseball Club

Address (1500 Boulewvard Rd

Cit¥ [farren

atate |-T
Zip Code |1g078

Fhone |20z 774-2415

Rep Code |ogz

Terms =

Credit Limit oo

w o ool Bl

Credit Comments

Open AR EBalance oo

|

¥TD Sales 5158.55

Special Field Colors

Colors for calculated (formula) fields, security fields, and highlighted (current) field can be set in the
WorkStation Manager. These color properties can be applied at run time to both default screens and
custom screens. For more information see the WorkStation Manager manual (Special Fields Color tab).

NOTE: This does not apply to Dictionary-1V graphical menus.

Communicating Between Classes
The CONNECT Directive

The CONNECT directive is the most important directive in OPENwaorkshop. It allows “connections” to
be made from one Object or Class to another. Views, Screens, Menus, Help, Reports and Queries can be
connected directly between themselves.

The power and flexibility of OPENworkshop is greatly enhanced by allowing intervening Methods to
modify the behavior of the Classes and the behavior of the connections between them.

The CONNECT directive is the framework that links OPENworkshop Classes and Methods together. It
not only invokes the required Object, it is also the vehicle for passing messages to the invoked Object.

Developers can CONNECT from a View, Screen, Menu, or Method to any of the OPENworkshop
Classes or Methods. You can use CONNECT within a Class. For example, a View can use CONNECT to
initiate another View, or even to create a second instance of the same View.

22
Copyright © 2021 Thoroughbred Software International, Inc



Messages carried by the CONNECT directive are used to pass information to the invoked Class or
Method. They can be used to communicate information about the Object that the target should work on,
or modify the behavior of the target.

CONNECT directives are simple in concept, uncomplicated to define, but extremely powerful in
execution.

CONNECT from a View or Screen
- —Townoeswer 1

L]
INVOICE DETAILLS 1
L1
T isomeRInvoicEs view |
L)
CUSTOMER CREDIT 1
]
CONNECT

For a View or a Screen, CONNECT directives are placed in the Data-name Pre- and Post-Processing
definitions in the associated Dictionary-1V Format. A Pre-Process is executed whenever the Cursor is
positioned on the Data-name in a View or a Screen. A Post-Process is executed when a user has
completed editing a Data-name.

Note that these CONNECT definitions are associated with a Data-name. In other words, having been
specified once, they are in effect wherever the Data-name is used, possibly in many Views and Screens
throughout the application. One definition is all you need to create and maintain. What is more, you can
guarantee the behavior of the system is consistent for the user, wherever that Data-name is displayed.

CONNECT to a View

The CONNECT directive allows you to define which rows should be placed in the View, and in which
order to sort them.

= 1 B E - || -

Cuzt Code |Cust Saleg|Customer Contact | Customer Mame Sr Cd |Customer State | +
100100 i 1/IM Tex Rogers Toot-Your-Horn AF Port Lavaca TX
100102 16628.04 Sue Thompson Computer Inc. JJ Madison MJ
100103 16951.04 Robert Brock Today's Company J5 Bridgewater MJ
100104 (17222 .36 Sarah Smith ACME Inc. AF Dayton M.
100105 1749845 'wWalter Snider Lumber Inc. HP BigHomn MD
100106 1760996 Denmis Gohlke 0K Development | JJ Port Lavaca TX
100107 1031016 John Dworaczyk Memory Lanes 45 ¥Yictona T | *

MEILALE d

23
Copyright © 2021 Thoroughbred Software International, Inc



Rows in a View can be Selected and Sorted.

Note: From the F5 Sort Window you can press F2 on any highlighted sort and the order of that sort will
be reversed. Reversing the order of the selected sort will retain the range values properly. VIEW$[30] set
to an "R" will cause the view to be presented in reverse order from the selected sort.

The general structure of the CONNECT VIEW directive simple to use and understand, as is shown in the
following syntax:

CONNECT VIEW *‘View-name"
[USING Data-name or Expression]
| [USING RANGE FROM Data-name or Expression;
TO Data-name or Expression;]
| [SELECT WHEN Expression;]
[SORT BY n]

Development Environment

In addition to the focus on usability for the OPENworkshop end-user, Thoroughbred has concentrated on
providing a highly flexible and accessible environment for developers. To a great extent this has been
achieved by the simple tactic of implementing the developer's interface to the system using
OPENworkshop Classes and Methods.

The developer's environment positively encourages an incremental development methodology. All
OPENworkshop Classes are easily available to the developer at all times, and can be modified as the
application is running. Most changes that the developer can make are effective immediately, so the
developer can see the results immediately.

For example, when a Menu is displayed the developer can select “Edit” to edit the definition of that
Menu. When the editing is finished, OPENworkshop will re-displays the Menu in its revised form, so the
developer can see and check the results immediately. The same facility is provided for View, Screen and
Help. Similar capabilities exist for Link, Format, and Data-name.

OPENworkshop also provides the developer with a comprehensive testing and debugging toolkit. Data
and control status can be inspected at any time through an online debug system.

A complete cross-referencing system shows the structure and relationships within the system for the
developer. These relationships are displayed using OPENworkshop Views, thus providing all the search
and selection facilities the developer needs. In addition, the developer can point to any item in the View,
and select it to display or edit the OPENworkshop Object directly, further increasing the high degree of
accessibility of OPENworkshop Class definitions.

Any environment that is so open to developers' needs to be protected from accidental or over-inquisitive
access by end users. OPENworkshop has security protection that disables or enables this access, by
passwords and user logins.

24
Copyright © 2021 Thoroughbred Software International, Inc



Getting Started in OPENworkshop

Thoroughbred makes getting started with OPENworkshop fast and efficient. Most important of all, it will
provide the developer with the tools to succeed. As with any new technology there is some learning to do.

OPENworkshop offers the developer strong benefits in productivity, as well as a more flexible user
interface. But to gain from these benefits it is essential that developers invest in training. In fact,
Thoroughbred is so convinced of this need that it is a requirement that any new customer have at least one
member of staff attend a training course. Having taken this step, the developer will be well positioned to
move forward.

Developers who already have experience with Thoroughbred's Dictionary-1V, and have applications that
are based on it, can migrate their applications to OPENworkshop easily. Many Dictionary-IV items can
be used directly, and Thoroughbred provides conversion utilities for others.

While experienced Dictionary-IV developers will be at an advantage, OPENworkshop features some
fundamental new concepts that must be understood. Therefore Thoroughbred requires that they too take
part in training before beginning to develop in OPENworkshop.

OPENworkshop runs on most popular operating systems. Once installed on the selected hardware and
operating system, an example application is available for developers to use as a starting point for their
subsequent development activities.

Developers will find that it is easy and quick to create a prototype skeleton of their intended application.
In fact this is the best way to become familiar with the environment. After this reflect on the initial design
decisions made for the prototype. Then, re-specify the Classes before you start to develop the first real
application. The OPENworkshop facilities positively encourage this incremental development style.

OPENworkshop gives you tangible, demonstrable results very quickly. It is an ideal environment to use if
your business needs to customize applications for customers, or to develop new applications for customer
requirements. You can show your customer the prototype as it is developed, and amend it step by step
with them.

Bibliography

Object Analysis and Design Comparison of Methods
Author: Object Management Group
Publisher: John Wiley and Sons

Principles of Object Oriented Analysis and Design

Author: James Martin
Publisher: Prentice-Hall

25
Copyright © 2021 Thoroughbred Software International, Inc



Object Oriented Methods

Author: lan Graham
Publisher: Addison-Wesley

Object Lifecycles: Modeling the World in States

Author: Sally Shlaer & Stephen J. Mellor
Publisher: Prentice-Hall

OPENworkshop Summary

Object Oriented

. Data controls the application

. Applications can be developed incrementally
. Relational Integrity Maintained

. Can Modify Object Rules

o Global Definition Based

Object Classes
Data Classes
Data Name

o Defines Item attributes
o Specifies Methods used when data is created, displayed or amended

Format

e Defines the Data item, and how it is stored

Link

o Specifies Files and Indexes

o Specifies Default Presentation Class
e Specifies Trigger Method for updates
e Insures data and Referential Integrity

Library

e Catalogues the relevant Classes to an application or subsystem

26
Copyright © 2021 Thoroughbred Software International, Inc



Presentation Classes

View - It is more than a browse

. Browse - Displays Data as Rows and Columns
. Multiple Link joins

. Calculated values

. Drill-downs

. Modify Data

Screen

. Displays Data as a Form

Message

. Displays a message with user response possible
Menu

. Catalogs options for user selection including list and matrix
Help

. Context sensitive help text

Report

. Custom and systems report library

. Programmable report designer supporting

Report design and formatting
Calculated and prompt entered data

Query
. SQL Query/Report generator
. Point and click user interface
. GWW connection to spreadsheets
Methods
View Method
° Called when a View prepares a row to display
o Ensures that data items are available, and calculates values required by the View

27
Copyright © 2021 Thoroughbred Software International, Inc



Pre-Processing Method

. Called when a View or Screen allows data entry or modification

Post-Processing Method

. Called when a View or Screen completes editing a Data item
o Data validation

Insert Method

. Called when a View or Screen adds a new row
. Default values and verification of new data

Link Trigger Method

. Called when a record is being updated
. Ensures that Data-names are being updated according to the application rules
° Ensures Referential Integrity

After Read Method
o Called when a record has been read by a screen, and prepares for editing
Application Method
° Implements application logic and rules
CONNECT

Links the Classes and Methods

. Invokes the required Object

) Passes messages to the Object

o Pre or Post Process

. Initiate additional views, Screens, Menus, Queries, Reports, Messaging, Methods
Re-Entrant

. When invoked the current environment is preserved, and restored upon completion

28
Copyright © 2021 Thoroughbred Software International, Inc



Object Concepts
Inheritance
o Obtain Characteristics from a Super class

Polymorphism

. Same expression or message can operate on Objects of different Classes
Recursive
. Obijects can send messages to their Methods recursively, or to themselves

Persistence
. Created Object transcends time and its creator
Three Tier Compliance

Presentation

. Graphical (GUI) - with VIP

° Character - with same application
. HTML - with VIP

Rules

. OPENworkshop

o Database

. Thoroughbred
. Oracle
o oDBC

Environments Supported

° UNIX/Linux
° VMS
) Windows

29
Copyright © 2021 Thoroughbred Software International, Inc



CONVERTING FROM DICTIONARY-IV

OPENworkshop classes are based on Dictionary-1V structures. OPENworkshop methods can be written in
either Script-1V or Thoroughbred Basic. Developers with applications that use Dictionary-IV are in a
great position to move them to OPENworkshop.

Some changes will be required. This section outlines a recommended approach to moving an application
to OPENworkshop, and details the necessary changes. The focus of this document is on code developed
based on the Solution-1V source code models and development standards.

First, the benefits and advantages of the OPENworkshop development environment over Dictionary-1V
are reviewed. Next, the process of moving your application code to OPENworkshop is detailed.

Differences between Dictionary-IV and OPENworkshop

A paradigm shift occurs when a developer moves from a 3GL/4GL based development environment to an
object-oriented environment. This shift occurs in moving the developer's focus from the programs to the
actual data itself. Rather than designing a program, which performs a series of procedures and functions
on data files, the focus moves to the data, files themselves and interactions between these files. Many
programs in OPENworkshop are tied directly to the individual data element itself at the format level.

Moving to OPENworkshop

The following subsections describe changes that must be made to existing specifications and code when
moving to OPENworkshop. For more information on how to change existing features, please refer to the
following sections.

Formats No changes are required to any format definition you have already
developed. You will probably wish to take advantage of the additional
facilities available, particularly to add pre-processing and post-processing
functions.

Links No changes are required to any link definition you have already
developed. You will probably wish to take advantage of the additional
facilities available, particularly to add pre-processing and post-processing
functions.

Menus OPENworkshop allows you to use pop-up menus. You will probably wish
to convert many of your menus to OPENworkshop pop-up menus.
RUN”OO” and select the Utilities option. For more information see the
OPENworkshop Main menu.

Views Existing Dictionary-1V views are automatically converted to
OPENworkshop Views. You will probably decide to modify your existing
views to take advantage of the greater flexibility of OPENworkshop
views.

30

Copyright © 2021 Thoroughbred Software International, Inc



Screens No changes are required to any screen definition you have already
developed. Screen definitions that are not already windowed must be
converted to windowed screens. For more information see the
Dictionary-1V Administrator Guide (Dictionary-1V Supplemental
Utilities).

Reports No change is required for existing reports.
Queries No change is required for existing queries.

Help No changes are required to any help definition you have already
developed. Help definitions that are not already windowed must be
converted to windowed help. For more information see the
Dictionary-1VV Administrator Guide (Dictionary-1V Supplemental
Utilities).

Scripts These will need to be changed to reflect OPENworkshop requirements, as
described in the following sections.

Thoroughbred  These will need to be changed to reflect OPENworkshop requirements, as
Basic programs described in the following sections.

The process of moving to OPENworkshop basically involves cleaning up certain types of undisciplined
code. This requires removing the following types of code:

Code that performs manual window manipulation.
e PRINT @ commands

* INPUT commands that do not use the dictionary

*  WINDOW commands

* RUN statements

The process of changing this type of code is explained in detail below and has been divided into two
phases, Phase | and Phase Il. For more information, please refer to the following two sections.

31
Copyright © 2021 Thoroughbred Software International, Inc



Phase | Changes

The following changes are performed in Phase | and are required when moving to OPENworkshop:

Creating OPENworkshop Menus

OPENworkshop gives you the capability of using pop-up menus rather than the full screen menus as in
Dictionary-1V. The OO program can be run using the command:

RUN’00”

To convert your Dictionary-1V menus to OPENworkshop list box menus select Utilities then select Build
List Box Menus. Enter the 2-character Library name or names (separated by commas) or enter the 2-
character Library name and menu name or names (separated by commas).

[SH:][L1,L2,Ln]

or
[SH:][LLM1,LLM2,LLMN]
Where:

SH is the sub-heading
Ln is a specific library name
LLMn is a specific library and menu name.

These menus are converted while honoring any existing VIP menu headings thus creating a different List
Box menu for each menu heading

The system creates help modules matching the screen menu name and overwrites help modules with like
names. It creates multiple help names for screen menus containing sub-headings. A menu help module
will be created containing the sub-headings and another one containing the selections that are subordinate
to each sub-heading. The help module names will be:

LL LLMM, LLMMO, LLMM1, LLMMn
LLmM1  LLM1, LLM1O, LLM11, LLMMn

Windowed Screens

Two types of screens exist in Dictionary-IV — standard (non-windowed) screens and windowed screens.
When running under OPENworkshop it is necessary to convert any standard screens to windowed screens
first. One reason is that when running under the OPENworkshop environment, you are never actually in
the main window (WINDOW 0). Also, each method cleans up all windows created by the method and all
files opened by the method. It does this by saving the window list and data file channel list when the
method is initiated and deleting all windows and closing all files not on these lists when the method
terminates.

32
Copyright © 2021 Thoroughbred Software International, Inc



As an added benefit, windowed character-based screens may be defined which use custom colors as well
as a variety of graphic characters.

All screens in your application can be converted to windowed screens using the Window Conversion
Utilities found on the Dictionary-1V UTMENU11 menu Dictionary-1V Supplemental Utilities menu),
then selecting Convert Screens Into Window Format. For more information see the Dictionary-1V
Administrator Guide.

Windowed Help

Because of the issues mentioned above regarding windowed screens, all help should be converted to
windowed help as well. Use the Dictionary-IV UTMENU11 menu (Dictionary-1V Supplemental Utilities
menu), and then select Convert Help Text Into Window Format. For more information see the
Dictionary-1V Administrator Guide.

Programs

Programs in OPENworkshop are called methods. It is important to understand that all methods in
OPENworkshop are actually public programs. The following paragraphs outline the differences between
Dictionary-IV scripts and OPENworkshop methods.

Script methods (type S) are similar to primary scripts (type 1) in Dictionary-1V. Most menu options
initiate type S methods. These are the most common methods used in OPENworkshop development.

Thoroughbred Basic methods (type M) are similar to Thoroughbred Basic programs in Dictionary-1V. See
the next section for converting Thoroughbred Basic programs to type M methods.

Continuation scripts (type 2) differ in OPENworkshop only in that they are now called as public
programs. When the OPENworkshop compiler encounters a RUN program-name command that specifies
a type 2 script, it will automatically generate a CALL to the script followed by an exit to the
OPENworkshop menu system. This works fine as long as your continuation script always returns to the
menu.

However, if your continuation script re-runs your primary script, you can quickly run out of memory
because of recursive calls. To fix this problem, see the section on Changing RUNSs below.

Overlay scripts (type 3), continuation scripts (type 2), and public scripts (type 6) work in the same way as
under Dictionary-IV.

NOTE: There is one additional issue with multiple program levels pertaining to the graphical user
interface (GUI). When a PRINT SCREEN is processed, the OPENworkshop environment keeps track of
the public program level at which the PRINT SCREEN occurred. If a PRINT SCREEN occurs at a lower
level (more deeply nested level), the environment assumes the program has been called recursively and it
creates a new instance of this screen. A new instance is created in both character mode and under the
GUI. This can result in extra objects being created.

To avoid this problem, make sure that your OPEN SCREEN and PRINT SCREEN are in the same
program as your PRINT SCREEN DATA and INPUT SCREEN DATA. Do not put them in an overlay
(public) or a primary script that chains to a continuation script.

33

Copyright © 2021 Thoroughbred Software International, Inc




BEGINs, Thoroughbred Basic Public Programs, Hard-Coded Channels

Although not a problem for script developers, any Thoroughbred Basic program that does a BEGIN must
be changed. These Thoroughbred Basic programs should be converted to type M methods. The process
for doing this is as follows:

»  First, change the script type from B (Thoroughbred Basic) to an M type method.

» Second, change the beginning of the method to read as follows:

METHOD A$,B$,C$ (or whatever variables are on ENTER list)
(documentation can go here without the need for an
exclamation (!) point.)

--... (signifies the start of the actual program code)

e Third, remove any general SET ESC and SET ERR logic at the beginning of the program. All methods
generate their own escape and error logic automatically. Finally, to exit the method, change your exit to
the following:

GO TO CUEXIT

CUEXIT is a standard routine, which will close all channels opened by the program, delete any
windows, which were created, and set the precision back.

* Fourth, remove any hard-coded channels that are used. Instead of opening the file on a hard-coded
channel, use the UNT function as follows:

C3=UNT;
OPEN (C3) "<file-name>"

» Last, recompile all methods using the OPENworkshop Source-IV compiler.

Note: Any formats you use can be included with an FN declaration immediately following the word
METHOD. This will include the format with the OPT="NONE" option.

Changing RUNs

Because there is no main program in OPENworkshop, every method may be thought of as a
self-contained public program, it is illegal to perform a RUN program-name command from anywhere in
your application. At first, this sounds like an arbitrary restriction, but looking closer, we see that these
RUN commands can be easily replaced. This is shown in several different examples.

First, consider the example of a period end update process. Here, you have a primary script (type 1) that
chains to subsequent continuation (type 2) scripts by using a RUN directive. In most cases, these will not
have to be changed at all, other than changing the type 1 script to a type S method.

34
Copyright © 2021 Thoroughbred Software International, Inc



The OPENworkshop script compiler actually translates these RUNs into a CALL to an ENTER-less
public program automatically. An ENTER-less public is a public program with no ENTER statement.
When you call a public in this way, all 4GL and 3GL variables are passed by reference into the public
program. In addition, any channels you have open are kept open. Essentially, the entire environment is
made available to the called program. When the called program terminates, the calling program
automatically exits. This all works perfectly as long as you don't chain through more programs than you
have available memory to load all of these programs simultaneously.

Next, consider the same example, only the script we are chaining to has a different environment area and
is atype 1 or type U script. There are two different approaches, which can be taken with these situations.

» First, the scripts you are chaining through can each be changed into a type 6 public script with an
ENTER statement containing no variables. Then, the calling program simply calls each of these publics
in succession.

» Alternately, you can change the scripts you are chaining through to type S methods. Each RUN would
then be replaced with the following code:

CLOSE ALL (this closes all open channels)
CONNECT METHOD *‘chain to prog name"

Next, consider a typical data entry program. Here a primary (type 1) script RUNSs a series of continuation
(type 2) scripts depending on what the user selects. Typically, the header portion is handled by one script,
the lines by one script and the summary screen by another script. Remember that the script compiler
translates each of these RUNs into a CALL. Obviously, these must be changed or you will run out of
memory after entering only a few transactions.

Again, the change here is relatively simple. Each of the RUNs in the continuation scripts is changed to set a
flag and do a TERMINATE instead of a run as follows:

LET #TAFINST1.INST-LINE-CONTROL = "'1"
(1 for header, 2 for lines, 3 for summary)
TERMINATE

Then, in the lead script a routine is used to control which program should be called as follows:

LET #TAFINST1.INST-LINE-CONTROL = "1™

LET STATUS = """

DO LOOP UNTIL #TAFINST1.INST-LINE-CONTROL = " ™
LET P$ = "ARPIDAT"™ + #TAFINST1.INST-LINE-CONTROL
CALL P$

ENDLOOP

The reason the above code contains a CALL P$ instead of the original RUN P$ is that the script compiler
will automatically TERMINATE after a RUN. Thus, our loop variable would never be checked, and it
would automatically exit as soon as one transaction was entered.

35
Copyright © 2021 Thoroughbred Software International, Inc



One function that comes in handy is TCB(13). This function will return the public program level at which
you are currently running. For example:

IF TCB(13) THEN

TERMINATE
ELSE

RUN "ARPCUSTO"
ENDIF

Changing RUN "ID" to TERMINATE

Our next example of a RUN is where we are returning to the menu. Doing a TERMINATE in
OPENworkshop will return you to the calling program if you are in a script or method that was called by
another script. Once you are back to the original method initiated from the OPENworkshop menu, a
TERMINATE will return you to the menu just as it does in Dictionary-1V. All RUN "ID" statements
should be changed to TERMINATE.

Changing RUN "IRPCAQ" to CONNECT REPORT

This code was used in Dictionary-1V to chain from a script to a Report-1V report. Again, the RUN is not
allowed. All RUN "IRPCAQ" statements should be changed to use the CONNECT REPORT directive as
follows:

CONNECT REPORT "'report name'

In addition, often a program was RUN in the T lines at the conclusion of a report. These termination lines
should be removed and the script that drives the report should simply CONNECT REPORT to each report
in the sequence of reports to print. At the end of the CONNECT REPORT sequence, the update program
can be initiated using a CONNECT METHOD.

Saving Format Changes in Report-IV

In order to make Report-1V extensible, Report-1V will attempt to put back all formats to their initial value
when the report was started. This may cause problems if you actually want to change a global format data
element. If you want to change a format, after setting the format value, you must assign the bracket
variable to the format. For example, to change a variable in #TAFINST1, do the following:

LET #TAFINST1.INST-PRINTER-ID = "LP"
LET JTAFINST1$ = #TAFINST1

This sample code will save the data in format #T AFINST1 that you have changed.

Changing RUN "IDVIEW" to CONNECT VIEW

IDVIEW is used in Dictionary-1V to chain from a script to a multi-record maintenance view. Since RUNs
are not allowed in OPENworkshop, these statements should be changed to use the CONNECT VIEW
directive as follows:

CONNECT VIEW "view name"

36
Copyright © 2021 Thoroughbred Software International, Inc



Removing WINDOW DELETEs

A WINDOW DELETE directive was often required in Dictionary-IV to clear a windowed screen. Under
OPENworkshop, because of the way the environment cleans up when exiting a method, these WINDOW
DELETEs are simply not needed. Further, because of the recursive nature of OPENworkshop, you could
actually run Invoice Entry from Invoice Entry. In the second instance of Invoice Entry, the window names
are not the same as the screen names and a WINDOW DELETE directive will cause serious problems.

WINDOW DELETE ALL and PRINT 'WC'

As mentioned before, since you are never in the main window (window 0) while running an
OPENworkshop application, both of these directives should be avoided.

WINDOW SELECT and WINDOW SELECT (NOUPDATE)

As mentioned previously, an OPENworkshop method cleans up all windows created when the method
terminates. Any WINDOW SELECT (NOUPDATE) directives you are using should be removed.
Otherwise, when the method exits, the environment will not be aware of anything displayed in a window
with the NOUPDATE option, and thus will not be able to clean it up. You will experience display
problems when you return to the menu.

Also, WINDOW SELECT ("window name"), even without the NOUPDATE option, should be avoided

for the same reason as WINDOW DELETE above. That is, the window name will no longer be the same
as the screen name beyond the first instance of the program.

PRINT @ (C,L)
Although the PRINT @ command is still supported by OPENworkshop, this code is not supported when
using GUI screens. This is because there is no one-to-one correspondence between a Thoroughbred Basic

@ position and the pixel locations on a GUI screen. The data you are printing should be put into a screen
formula and the PRINT @ should be replaced with:

PRINT SCREEN screen-name FORMULAS

INPUT @ (C,L)
As with PRINT @, the INPUT @ should be replaced with

INPUT SCREEN screen-name DATA-NAME LIST

PRINT 'CE'

The 'CE' mnemonic that clears from the cursor position to the end of the screen can cause problems in two
areas.

» A GUI screen has no way of dealing with this mnemonic or any other mnemonic, which prints data or
manipulates the screen presentation.

37
Copyright © 2021 Thoroughbred Software International, Inc



e The screen color attributes will be lost for the area of the screen, which is cleared if running in character
mode.

Instead, you should use the PRINT SCREEN DATA and PRINT SCREEN DATA CLEAR directives to
display and clear screen information.

Phase Il Changes

Phase Il changes are aimed at helping you reduce the amount of procedural code required to perform
various functions in your application.

CONNECT VIEW versus PRINT VIEW

Changing your PRINT VIEWSs to CONNECT VIEWSs provides a significant increase in flexibility to your
application. A CONNECT VIEW can be made to look like a PRINT VIEW with the added benefit that
the user can change the view on the fly without changing the underlying code or recompiling any
programs. In addition to changing the columns defined in the view, the location and size of the view may
also be changed.

CONNECT SCREEN versus INPUT SCREEN

As mentioned previously, OPENwaorkshop provides several major classes that can reduce the amount of
procedural code in your application substantially. By restructuring your data entry programs so they are
built around CONNECT SCREEN instead of INPUT SCREEN, you can eliminate a lot of duplicate code.
The reason is that this code is tied to the format data element name to which it applies instead of existing
in many different programs that operate on this particular data file.

CONNECT VIEW versus INPUT SCREEN LINE OFFSET

In the same way as CONNECT SCREEN, CONNECT VIEW can eliminate a great deal of complex code
that was built for header/line entry using INPUT SCREEN LINE OFFSET. All of the flow control code
for line item entry is built into the CONNECT VIEW class and can be eliminated from your application.
In addition, the 1/O triggers contain the code to update the individual files and the INSERT METHOD
command handles the line insert logic. This greatly simplifies the line entry process.

Inquiry Programs

Inquiry programs can be re-implemented eliminating virtually all of the program code while at the same
time adding functionality. Again, this is due to the power of CONNECT. The inquiry can begin with a
masterfile view such as a customer view, which allows selection of a particular customer. From here a
pop-up menu can be displayed which shows various inquiry options. From each inquiry option, a
CONNECT VIEW can be displayed with further access options for each of these records.

38
Copyright © 2021 Thoroughbred Software International, Inc



Using the Graphical User Interface

Much of what you need to do to use the graphical user interface is covered in the previous sections on
converting to OPENworkshop. The following list summarizes the rules that must be followed when
verifying that your application will run with the GUI:

»  Verify that you are not doing any direct Thoroughbred Basic PRINT @'s or INPUT @'s in your code.
* Avoid WINDOW DELETE, WINDOW CREATE, and WINDOW SELECT directives.
e Convert all screens and help text to windowed format if using standard format.

» Make sure OPEN SCREENS and all PRINT SCREENS are at the same public program level.

39
Copyright © 2021 Thoroughbred Software International, Inc



ACCESS TO DEVELOPER'S FACILITIES

Menus

OPENworkshop provides programmers with facilities to help speed the development process. These
facilities are designed to encourage a prototyping, incremental approach to development.

System classes are all highly accessible while an application is running so that they can be inspected and
modified at will. Powerful tracing facilities and where-used views make it easy to trace the recent history
of processing and control in the application under development.

To help learn the wide-ranging facilities, OPENworkshop's context-sensitive help system prompts the
developer whenever required.

Dictionary-IV Menu

When you first log on to OPENworkshop, a short menu is displayed. Select the option Dictionary-1V to
display a menu of classes that you can work with, as displayed here.

M == E3

Source-IU

Utilities

Solution-IU

Security

Sample System

UIPL DN

UIPL OFF W HmE E

Help -

IDOL-TU OW

IDOL-TU Format

Console Mode Uiew OU

Log OFF Uiew IU
Screen
Link
Menu 0OU
Henu IU
Message
Help
Report
Query
system
Global

The Dictionary-1V Menu provides access to all classes in the environment, either by selecting FORMAT
from the menu, or indirectly by first selecting a library, and then formats within the library.

The Dictionary-1V Menu, shown here, is available from the main OPENworkshop Menu and also from
the Ctrl-P hotkey, which can be used at any time during operation of an application.

Access to these facilities is protected, ensuring that only users with developer status can access them.

40
Copyright © 2021 Thoroughbred Software International, Inc



RUN"OQ”/Ctrl-P Hotkey

The Dictionary-IVV Menu and other utilities are available at any time to developers by running the OO
program. RUN”’OO”” from Thoroughbred Basic Console mode or OO from any Dictionary-1V menu
selection field.

[ [ 5] %]
Dictionary-IV

Source-IU
Utilities
Solution-IU
Security
Sample Systemn
UIPY OH

UIF4 OFF
Help

IDOL-TIVU 0w
IDOL-TV
Console Hode
Log OFF

Try it during your exploration of the OPENworkshop system. Select Close (F4) to return to your previous
position.

Note: Do not try DEVELOPER ON/OFF from the System Utilities until you have reviewed the
Developer Status section of this manual.. The facilities for developers are controlled by this switch and
will become unavailable to you. For more information see the Dictionary-1VV Administrator Guide.

The Library View
The first option of the Dictionary-1VV Menu displays the Library View, a typical example of which is

shown below. This view provides a summary of all the classes and objects in the system. Select Library
from the menu to display the following view.

» Library Wiew < [_ =] =]

Libr 00Ps |LGL 00Ps |LGL

Mame |Library Description|/Fmts Scns (Uiew |Uiew Link |Menu |Henu [HMsgs |Help Rpts
46 |4GL Library [i] 2 a 2 15 3] a 2 51 1
45 |4GL Sample Library i L a 3 i] a a 1 a a
8D |8.n On—Line-Help ¥ 5 1 12 i] a a 1 | 513 a
80 |TUY Library a a a a a [i] a 8 | 209 L]
GU |GUI Executive Vital 3 4 a a 3 a 1 2 4 1
ID |IDOL IV Library 126 | 144 36 57 | 181 [i] L 18 (1752 ]
0E |0PEMworkshop Exampl] 13 14 21 9 17 a a 1 L] 18
00 |ODbject-Uiew Library| 78 56 84 ] 59 3] a 1 738 4
Q4% |QUERY-IU Library 16 14 2 1] 18 a a 2 57 5
SL |tsi {81/22/98 15:32 1 a 1 a 1 1 1 a 2 a
§§ |tsi (81522798 15:31 1 a a a a [i] a [i] a L]
MR IR |

More than just displaying the list, the Library View provides access to all the objects in the system. Try
this for yourself. Move the highlight cursor to, the Fmts column and the OE row, which is highlighted in
the illustration above then, press Enter. A list of formats from the OE library will be displayed.

41
Copyright © 2021 Thoroughbred Software International, Inc



Access Related Objects

In many cases, objects are related to others. A view uses a link. The view may have an associated view

method and help.

> Dbject ¥iews < [ _ [T =]
Uiew Link KDDWECZ B CI|EC|DCC Uiew
Hame Hame Uiew Description CCHEC|S|PHHMTIDID Hethod
B8DHUMS BDHUMS Humeric Types YIY|Y([¥Y|H D |F |E D

IDBHELP IDBHELP IDOL IV — HELP FormY |Y (Y |Y |N D |F |E D

IDBSCUC1 |ID8SCLCA (Compile Error File |H |H (¥ |¥ (N [Y |D (F |[F |D [D

ID8SCUC2 |IDBSCLC2 |Compile IFDEF Defin|¥ |¥ |¥ |¥ [N |¥ |D |F |E |D |D

ID8SCUDS |IDBSCLDO |Library File Uiew |¥ |¥ |¥ |¥Y [N |¥ |D|F |[E |H|D

ID8BSCUF1 |IDBSCLF1 [Source Lock Detail:(y |V |¥ (¥ |H D |F |F [N |D

IDBSCUF2 |ID8SCLF2 |Source Lock Detail:|y |¥ |¥ |¥ |H D |F [F |H|D

IDBSCUF3 |IDBSCLF3 |Source Lock Detail,|¥ |¥Y |V |¥ |[H D |F [E [N |D

IDBSCUSH |IDBSCLSH |Source File Uiew YiyY|¥(vy|vy|Y[D[F |[E|D|D

ID8SCUST |IDBSCLS3 [Currently Locked So/¥ (¥ (¥ |Y¥Y |¥ |¥Y |D[F [F |D|D

IDBSCUS2 |ID8SCLS?2 (Backup Source File |V |¥ (Y |Y [N ([Y |D[F |E |[D |D

K|l ¢4+ >l ¥

Wherever you are displaying the Object Views, all of these related objects are available. Simply move the
cursor to the relevant field and select an option.

Select Close (F4) to return to the Library View.

Special Functions

In views and screens the Special functions (F7) option provides access to a menu of maintenance
functions for developers. The specific list of available functions may change from place to place, as you

move through the system.

[¥] 5pecial functions &l E3
Display datanames
Display descriptions
Uiew edit

Link edit

Format edit

Prompt edit

Headings

Lock columns

Save viey

Source-IU

DICTIONARY

Select Special functions while the Library Header is displayed to see a typical example of the special

functions available while in a view.

42

Copyright © 2021 Thoroughbred Software International, Inc



F10 Key

In a menu or help, the F10 key presents a command line, allowing you to connect to Dictionary-1V
maintenance and a set of utilities. Access to the F10 command line can be blocked by disabling this
feature in the Installation Information screen. The following tables show the commands that may be

entered:

[E]l OPENworkshp Commands

Enter Command or <F6> For Help

N_x

Press F6 and select Dictionary Commands.

Command Argument Example
FORMAT format-name [FORMAT COEFCUST] or [F QEFCUST]
GLOBAL [GLOBAL ] or [GLO]
HELP help-name [HELF CEHELF] or [H OEHELF]
LIBRARY library-name [LIBRARY OE] or [L OE]
LINK link-name [LINK OQELCUST] or [LIN CELCUST]
MENU pop—up-menu-name [MENU OEMO01] or [M OEMO1]
MENUS sScreen—-menu-name [MENUS CEMS01] —— no shorthand
MESSAGE message—dict-name [MESSAGE OEMSGS] or [MES OEMSGS]
METHOD method—-name [msg] [METHOD COEGENTD] or [MET OEGENTI]
QUERY query-name [QUERY OEQRY1] or [Q OEQRY1]
REPORT report-name [REPORT CERCUST] or [R OERCUST]
SCREEN screen—-name [SCREEN QESCUST] or [S QESCUST]
S0L4 [SOL4] or [50]
SQURCE lib.source [SOURCE CE.QOEM1] or [SOU OE.(QEMI1]
SYSVARS [SYSVARS] or [5Y]
UTILITY [UTILITY] or [U]
VIEW view-name [VIEW CEVCUST] or [V QEVCUST]

Press F6 and select Utility Commands.

Command

Command description

Display unix directory.
Print disk directory.
Build fileset list.
Rename programs or files.
Erase programs or files.
Display file information.
Ghost task communication.

Hex file dump.

Basic defined directories.

List disk directory.

Display task allocation.

Define files.

Update Object Libraries.

Transfer programs or files.

Transfer of expand programs or files.
Unix Utilities

CHURHOZHUROMmMOE >N

43
Copyright © 2021 Thoroughbred Software International, Inc



F1 Key

You can view and maintain the definition controlling a menu by pressing F1 while the menu is displayed.
The following figures show the result of pressing F1 while the standard Dictionary-1V menu is displayed:

Menu Definition

[E] oMot =
LMNLT,14,0,8

Library CONNECT VIEW OOVLIER
Format CONNECT WIEW OQOVFMT
View COW CONNECT WVIEW OQOVVIEW
View IV CONNECT VIEW OQOVV4GL
Socreen CONNECT WVIEW OQOVICREN
Link CONNECT VIEW OOVLINE
Menu OW CONNECT VIEW OOVMENTO
Menu IV CONNECT VIEW OOVMENT
Message CONNECT VIEW COVM3G
Help CONNECT VIEW OOVHELP
Report CONNECT VIEW OOVEPRT
Query CONNECT WIEW OOVORT
System CONNECT METHOD ©OMOD
Global CONNECT WVIEW OQOV3IYSH
LTOPIC Class maintenance menu ‘:J

|»

F11 Key

Whenever the cursor is in a data element name field of a screen or a view you can press the F11 key to
obtain the definition of the data element name. You can also maintain the data element name at this point
through the F11 key.

[EJUTCUST: Sample Customer File = o] =]

F Help K ENF D ¥ Format
Num ————-— Data Name—-—--—-- -—-- Sige-—-— 3 Code ¥ T T D T N Cffset

9 REF-CCDE
...... Pre Process:
CONNECT(2) VIEW UTREFP

Noooomnw oF =

44
Copyright © 2021 Thoroughbred Software International, Inc



Help

Whenever you are in doubt, select Help (F6) to tell you what your options are. Help changes as you move
from place to place through the system.

General view help ... [H|El E3

F1-Resize/moue window
F3-Change column width
F4-End
FE-Selact zort
Fé-Healp
F?-%pecial functions
Fa-Commands
F2-%ingle record maint
F18-Goto
F11-Field definition
F1z-0ther functions
F16-Hard-copy
F4 to End or other
function key for
additional help.
EMNTER:to get halp
for edit keys.

Summary of Function Keys and Access Routes

Key |Menu View Screen Help

F1 Edit Edit Edit Edit

F2 |- Edit - e

F3 Print Screen Print Screen |- Print Screen

F4 End (Close) End (Close) End (Close) End (Close)

F5 |- Sort Sort |-

F6 Help Help Help Help

F7 |- Special Functions ~ |----- Special Functions

F8 Move File Maintenance  |----- Move
Commands

F9 |- Display Screen  |----- |-

F10 |Command Goto Goto Command

F11  |----- Edit Data Element |Edit Data Element |Edit Data Element

F12  |----- Other Functions ~ |----- |-

F13 |- | e Debug

F14 |- | e e

F15 |- e e e

F16 |Print Print Print Print

A developer can redefine the meaning of any of these keys by assighing a CONNECT directive to that

key.

45

Copyright © 2021 Thoroughbred Software International, Inc




OPENWORKSHOP CLASSES

This section provides reference material on the following OPENworkshop classes:
* Presentation Classes

Help
Menu
Message
Query
Report
Screen
View

e Data Classes

Library

data element name
Format

Link

e Directives

CONNECT Directive
Other Directives

Presentation Classes

Help

The help subsystem lets you provide context-sensitive, structured help throughout an OPENworkshop
application. You can specify help messages to display on an application, class or data element name level.
You can present help in a number of different forms.

OPENworkshop displays a help message whenever a user selects Help (F6). Other help messages are
displayed as prompts by OPENworkshop applications. As a developer you can define the size and
position of the window in which the help is displayed. In VIP size and position confirms to Windows
standards. There are two alternative strategies for developing the text of help messages:

» Since OPENwaorkshop allows you to create help whenever none is defined, it is possible to wait until
the application has been created then build the help as the application is exercised. For help messages
that will be displayed in response to the user selecting Help this strategy will often serve to make your
help more relevant and accurate in shorter time.

e The alternative is to create help through the Help Header, shown below. This method must be used to
create indexed or function key help.

46
Copyright © 2021 Thoroughbred Software International, Inc



» Help ¥iew < M= R
Help L Hdr Nbr |LastChng |Create
Name S Description Typ [Recs |Date Date
LG2P1 1 |PC-12, Select Printer 8 | 60:00:008| 04/21/92
LGCCDESC |1 |4GL Script Description 9 | 16:50:18| 84/21/92
LGCCHAME (1 |Common: Component Hame 4 | 16:87:58| A5/28/92
LGCCSEL |1 |Definition Type Option Line 10 | 16:88:33| 8u/21/7092
LGCCSTYP |1 |Script Type 33 | 16:51:-81| 84/21/92
4GCHA 1 |Compile Screen, Compile Library 9 | 16:17:82| B4/21/92
LGCH2 1 |Compile Screen, all scripts 8 | 16:18:28| a4/21/92
4GCH3 1 |Compile, from—to option 9 | 12:88:35| 84/21/92
4GCHY 1 |Compile Screen, script name mask 1% [ 16:27:16| 8uf21/92
LGHPSTYP |1 |Script type 5 | 14:27:-27| 83729793
AGLBALYH |1 |Library: All components {(¥/H)? 7 | 16:29:08| 04%/21/792
Kl 4> [an]|a]] |

To add a new help item select Line Insert in the Header View. OPENworkshop creates a new row.

> Help View < M= E
Help L Hdr |Hbr |LastChng [Create
Hame S |Description Typ |[Recs |Date Date

1 ? | BA:A0:AA| A2/05/!
4G9P1 1 |PC-12, Select Printer 8 | A9:90:080| AN/21/¢
LGCCDESC |1 [4GL Script Description 9 | 16:50:18| a4/21/¢
LGCCHAME |1 [Common: Component Hame 4 | 16:87:58| 85728/
AGCCSEL |1 [Definition Type Option Line 18 | 16:88:33| 84721/
AGCCSTYP |1 [Script Type 33 | 16:51:81| 84/21/¢
4GCHA 1 |Compile Screen, Compile Library 9 | 16:17:82| au/21/¢
LGCH2 1 |Compile Screen, all scripts 8 | 16:18:20| 84721/
AGCH3 1 |Compile, from—to option 9 | 12:808:35| 84721/
AGCHY 1 |Compile Screen, script name mask 14 | 16:27:16| 84721/
LGHPSTYP |1 [Script type 5 | 14:27:27| 83/29/¢
| <242 2|4l | 1]

Enter a name, description and other required attributes, as shown in the table below. Then, with the
highlight on the Help Name, select Edit (F1) to create the help text using the help text editor.

Column Attribute
Help Name Two character Library name followed by up to 6 character Help name
LS Language Suffix. Defaults to 1. Select a different suffix for different

languages where you are using multi-language support. See Dictionary-I1V
Administrator Guide for more details.

Description Up to 40 character description
Hdr Typ Header Type.

C = Centered

L = Left aligned

R = Right aligned
space = no header

OPENworkshop uses the Description as the Header.

Other columns |Maintained by OPENworkshop

47

Copyright © 2021 Thoroughbred Software International, Inc



Help Text Editor

The help text editor allows you to create and edit the contents of a help text file, and also control where
the window is displayed on the screen. In VIP size and position confirms to Windows standards. The
following table provides an overview of the facilities provided by the editor. See the on-line help within
OPENworkshop or review the Dictionary-1V Reference Manual for more details. Below is a table of help

editor for character functions:

Key |Function Description

F1 |Split Line Splits the current line into two lines at the cursor position.
Characters after the current cursor are moved to the
following line.

F2 (Join Line Joins two lines eliminating any blanks at the end of the
first line and the beginning of the second.

F3 |Spell Check Performs a spelling check on the help file contents.

F4 |End Ends the editing session, giving you the choice of saving
or discarding the changes made.

F5 |Format Text Justifies text from the current line to the end of the
paragraph.

F6 |Help Displays help for the help file editor.

F7 |Special Functions A menu of special functions as follows:

Change Tabs Sets tab positions for the file.

Resize/Move Window Moves and resizes the window in which help is displayed.

Edit Another Document Allows you to view or edit another document, returning the
current document on completion.

Color Settings Allows color highlights to be added to help.

Edit Mode Options Allows the on/off status of a number of flags to be
changed. These flags control text mode vs graphics mode,
right margin alignment, automatic hyphenations, character
attributes.

Change Window Title Allows the title of the help message to be changed.

Select date Inserts the current date into the file being edited.

Extended Help Presents help on how to design help text.

Window Move Allows the position of the help window to be changed
using tab and up/down keys.

F8 |Search/Replace Allows a search or search and replace throughout the text
file

F9 |Expand Window Expands the window to full screen size.

F10 |GoTo Searches the document for a pattern and places the cursor
at that position.

48

Copyright © 2021 Thoroughbred Software International, Inc




Key |Function Description

F11 |Margin Sets the left margin to the current cursor position.

F12 |Copy Copies the contents of another document to the current
position in the help text.

F13 |Cut/Paste Allows text to be cut from one place and pasted elsewhere
within the file.

F14 |Undo Undoes the last change made to the file. Multiple uses

successively undo previous changes.

F15 |Character/Graphics Mode |Switches editing between editing characters and editing
graphics characters.

F16 |Print Prints the help message text.

OPENworkshop offers a choice of types of help. See the beginning of this subsection for examples of
their appearance. The type is specified to OPENworkshop by the first line of the help text.

Simple Help

Displays a simple text message when Help (F6) is selected. Any help text file that does not begin with
one of the reserved help type specifiers (see the following) is assumed to be simple help.

To define a simple help file select Line Insert in the Help Header, specify the attributes required, then
select Edit (F1). Create the text. Adjust the position and size of the help window as required, and save the
help file.

Indexed Help

=| BHELP On-Line Help —
Edit Format

HI .9 2 8 1@ +
Orders=s___ LLHELF1
Inuoices_. LLHELFZ

Specials. LLHELF3

Shows a list of help subjects that the user can select when this indexed help is displayed. After the
operator has selected from the list OPENworkshop displays the referenced help file.

Indexed help is specified by the characters .HI. starting at the first row, first column. You must then
specify the window size and position for the help. (In VIP size and position conforms to Windows
standards.) In this example, the help is to be displayed in a window that is 9 characters wide, 3 characters
high, positioned at column 0O, row 10.

To define a help index file select Line Insert in the Help Header, specify the attributes required, then
with the highlight on the name field select Edit (F1) for the help index file. Create the text as indicated in
the model shown above and save it. Then create a help item for each of the options specified in the
indexed help list. Typically, each of these items will be simple help, but they may be any type.

49
Copyright © 2021 Thoroughbred Software International, Inc



Function Key Help

=| BGHELP On-Line Help |~
Edit Format

_HF _.LLHLF +
F1-Cusztomars

FZ-Inuentory

Fi-%ales=s

FE-Other

Displays a help message for a number of function keys, determined by the contents of the function key
help file. When the user presses a function key while this help message is displayed, a further help
message is shown, selected by appending the two digit function key value (01, 02, etc.) to the help name
prefix specified in the first line of the file.

In this example, pressing F3 would display a help module named LLHLPO3. Function key help is specified
by the characters .HF. starting at the first line and the first column of the help file.

To define a function key help file press Line Insert in the Help Header view, specify a help name, then
with the highlight on the Help Name select Edit (F1) for the help text file. Create the text as indicated in
the model shown. Adjust the position and size of the help window as required, and save the help file. (In
VIP size and position conforms to Windows standards.) Then create a help item for each of the function
keys specified in the function key help file to contain the required help text. Typically, each of these items
will be simple help, but they may be any type.

String Substitution

The help subsystem allows the application developer to substitute strings in a help message under the
control of the application. To take advantage of this facility, use the CONNECT HELP directive and
supply substitution parameters in the HELP$ string array, which is described in the HELP$ section of
this manual.

Help Topics Subsystem

Complementing the context-sensitive help system, OPENworkshop provides an indexed help subsystem
to let users find help on any topic.

50
Copyright © 2021 Thoroughbred Software International, Inc



Using Help Topics

From the Main menu select Help.

M M= E3
Dictionary-IU

Source—IU
Utilities
Solution-1IV
Security
Sample 3ystem
UIPL OH

UIPYL OFF
» Help

IDOL-TVU oOu
IDOL-TU

Console Hode
Log OFF

A menu of major topics is presented for the user to select from.

M =10 x|

Language Help
COHMHECT Help
Dictionary-IU

M == 3
Dictionary-IU

Report-IU
Query—IU
Script-IU
Source-IU

BASIC reference
How do I7%
Miscellaneous

Hot Key Help

51
Copyright © 2021 Thoroughbred Software International, Inc



Select the category required, and the Help Topics subsystem opens a view of all available help for the
selected category.

Help Topics = =i B
Choose a topic from the list below
<RETURH> to view, <F8> to Search, <F18> Goto

130, BFILEB; Release Hotes
138, BHELFP; Release Hotes
138, BINPUT; Release Hotes
1308, BMEHNU; Release Hotes
138, BHOVE; Release Hotes
130, BMSG; Release Hotes
138, BOPEHP; Release Hotes
138, BOPEHS; Release Hotes
1308, BUIEUWF; Release Hotes
138, BZPHC; Release Hotes
1308, API menu; Release Hotes
128, API; Questions and Answers
138, all API; Release notes

K e [ a e > a1 |

Select Search (F8) to search for items that contain one or more keywords.

M= B3

Enter topic kewwords for search: oK |

At the prompt, enter either a single text string or multiple items separated by commas. OPENworkshop
searches for all items in the current category that contain any of the keywords entered, i.e., the keyword
search does a logical OR between multiple keywords.

Select GoTo (F10) to go to an entry in the list that commences with a specified character string.

The list contains both help items and menus. Once the required item is located in the list, select it to
display the item. If the chosen item is help, OPENworkshop simply displays the help text. If the chosen
item is a menu, OPENworkshop displays the menu and allows the user to either select from that menu or
end the display.

Creating Help Topics Items

The developer can make help items or menus available to the Help Topics subsystem simply by adding a
.TOPIC declaration to its definition.

.TOPIC Help, select printer Y“APPL=3C,RP,DI
Zelect Printer: LP P1 P2 ....

Zelect the printer where the report is to bhe printed. Printer names
[ie. LP P1l} are established in BASIC for associated physical ports
on your computer.

52

Copyright © 2021 Thoroughbred Software International, Inc



The help shown above contains a Help Topic declaration. The text, Customer Code, will be added to the
topics available. The category into which this topic is to be placed is defined in the \APPL segment of the
declaration; this declaration will be in the OE category. If no \APPL statement is made, the item will be
placed in the Miscellaneous (ZZ) category.

NOTE: If the first line of the help definition contains a help type specification, then . TOPIC must be at
the end of a help definition after the Help text. See the example below.

=| OEM1 -
Edit Format

MHL7 2 T A +
Summary COMMECT UIEW OEWINUH USING H#OEFCUST _CUST-CODE SORT 1 -
Detail COMMECT UIEW OEWINUD USING #0EFCUST .CUST-CODE BY $0RT 1

_TOFIC Customer 3ales repaorts

_TOFIC Reports - Customer 3ales

TOFIC $ales Reports] o

The menu shown above contains multiple Help Topic declarations, enabling the item to be searched for
in various ways.

Generating the Help Topics Index

The Help Topics index must be generated before the Help Topics subsystem can be used. Use the Control
Menu/System Administration menu to display the menu below.

M [_ 0] %]

Window Configqurator

Terminal Configurator

Printer Table HMaintenance

Printer Assignment

Generate Printer Tables

System Security

Set Developer/User

System Password

Installation Information

Operator Code Information

Query-IU Parameters

BASIC PRH's

Language Code Parameters

Backup/Restore Parameters

Generate Sample Files
Generate Script Skeletons

» Generate Help Topics
Operator Stats Report

HMaintain Date Hasks

About

OPENworkshop requests the names of the libraries to be added to the index. If an index already exists,
you are given the choice of appending to the existing index or replacing the existing index. For more
information see the Dictionary-1V Administrator Guide.

53

Copyright © 2021 Thoroughbred Software International, Inc




Menu

A menu allows the user to choose an action from a number of options. OPENworkshop supports three
different forms of menus: a simple list, a matrix menu and a selection menu.

List Menu Sample

= Customer reports menu
| # |Customers By CUST-CODE
| |Customers By COMPANY-CODE
Customers By SALES-REP
Customers By STATE

In a list menu on a character terminal move the cursor up and down using the Up Arrow and Down
Arrow keys. Alternatively you can press the first character of the option you require, and the lightbar will
move to the next line starting with that character. In a graphical user interface, point and double click on
the item.

Matrix Menu Sample

=| sample Matrix Menu
File giews | Screens |‘U’itals | Reports
Customer
Inventory
Sales Rep
In¥oices
Iny Dt

A matrix menu allows you to choose from a matrix of options. On a character terminal use the arrow keys
to move around the columns and rows, and the Enter key to select the required option. On a graphical
workstation, point and double click to select the option.

Selection Menu Sample

Definition| Delete

<Execute> | N

<Toggle > | Mo
Formats| Ho

DOPS Views| Ho

A selection menu is used to pass selection parameters to an operation. The example on the previous page
shows a menu that will execute a Delete function when the Enter key is pressed. Each of the parameters
listed below the cursor can be toggled by moving to the cell and selecting it. Alternatively, select Toggle
to toggle all the parameters at once, when you are ready, select Execute.

The developer is able to control the position and appearance of the list, matrix, or selection menu on the
screen, and the groups of users who may see and select the menu as whole or individual options on the
menu.

54
Copyright © 2021 Thoroughbred Software International, Inc



Maintaining Menus

To maintain menus move to the Menu Header view, as shown below:

> OPEMworkzhop Menus < | _ =] =]
Henu L Hdr |LastChng [Create Hbr
Hame S |Description Typ |Date Date Recs
EDBASIC |1 |8.n Enhancements 81/28/98| 12/23/89 17
EDBDIR 1 |Directive Index 89/04/96| 12726789 116
8DBDIRS54 |1 |Trans Processing 8.2 99/04/96| B8/21/1 10
8DBDIRSS |1 |FORMAT. .. ....... 8.2 89/04/96| A8/ 21/M1 L
SDBDIRS? |1 |OPEN OPT= 8.2 89784796 89/14/93 1]
8DBDIRGG |1 [SET 89784796 89/14/93 12
8DBDIROP |1 |OPEM............. 89/784/96( B5/705/794 7
SDBDIRUHN |1 [WINDOW options B9/04/96| BB/16/91 27
8DBFATRH |1 |ATR B.2 B9/07/96| B2/18/91 4
8DBFCUTH |1 |CUT B.8 89/04/96| BR/27793 5
8DBFHNHN 1 |HUH Fn 89/04/96| B1/16798 1
€| el 2l 2]l | ]

To edit an existing menu, move to the row and select Edit (F1). To create a new menu, select Line
Insert, enter a name and attributes (see below) for the menu and then with the highlight on the name field
select Edit (F1) to edit the new definition.

Column Attribute

Menu Name  [Two character library name followed by up to 6 character help name.

LS Language suffix. Defaults to 1. Select a different suffix for different
languages where you are using multi-language support. See the
Dictionary-1V Administrator Guide for more details.

Description Up to 40-character description.

Hdr Typ Header Type:
C = Centered
L = Left aligned

R = Right aligned
space = no header

OPENworkshop uses the description as the Header.

Other columns |Maintained by OPENworkshop

A file containing the menu definition is opened. You can edit the file using the text editor. The definitions
for each of the three sample menus shown at the beginning of this section are shown in the following. The
type of menu required is specified in the first line of the menu definition.

55

Copyright © 2021 Thoroughbred Software International, Inc



List Menu

= OEM1 -
Edit Format

MN_ZE 4 B3 1 Py
Customers By CUST-CODE COWNECT REPORT OERCUST

Customers By COMPANY-CODE COWNECT REFORT OERCUST,, 1

Customers By SALES-REP CONNECT REPORT OERCUST | &

Customers By STATE CONNECT REFORT OERCUST | 3

In the first line, .MN. specifies this as a list menu, to be displayed in a window that is 25 characters wide,
4 lines high, and positioned at column 53 and row 1.

Each line of the menu is defined in the following lines of the definition. The first 25 characters are
displayed in the window. The directive to be processed when the option is selected starts at character
position 25+2. If the definition defines more options than the height of the window, scroll within the
window.

Matrix Menu

.HM.41,9,15,1

File Views |Screens|VYitals|Reports

Customer | #iHHHH (HHERE | BRI | SHHHE
Inventory | (HREHERE | ERERHE | B
Sales Rep |HHEHHE | B SHEHE | RIRRH
Invoices |H#HHE (HERHHE | B | B

Inv DLL|HAHHHE | HEHEHHE |

5,5
HELP=0ECUSB1Y; CONNECT VIEW DEVCUST
CONMECT SCREEM DESCUST
CONNECT HENU DEMCUST
CONNEGT HENU DEM38
CONMECT UIEW OEVINUN
CONNECT SCREEM OESINUN
CONNEGT HENU OEMINVEN
CONNECT HEHU OEM31
CONMECT VIEW DEVSLRP
CONNECT SCREEN DESSLRP
CONMECT HENU DEMSLSRP

Bl A~ R B =B Tp B LR L R -

- =

As with the list menu, the first line defines the type of menu and the size and position of the window. The
example also shows how to specify a help file that will be available when the menu is displayed.

The next 9 lines, including the line graphics, in this example define the layout of the menu on the screen.
Line graphics define the outline border. Other text is displayed as typed, except fields filled with a #
(pound sign).

These fields define where the cursor can move to in the displayed matrix menu.

You must specify a regular matrix, i.e., no gaps can be left. However, different columns do not all have to be
specified at the same width. Choose widths that suit the column headings.

56
Copyright © 2021 Thoroughbred Software International, Inc



The line numbered 0 that follows the screen representation specifies the number 4 columns and 5 rows
within the matrix menu options matrix. Each row and column combination offers an option to the user,
defined in the following lines of the menu definition.

The following lines specify the directives to be executed for each cell in the matrix. Lines are numbered
by counting the columns row-by-row. The line numbered 1 specifies the directives to be executed for row
1 and column 1. Line 2 specifies the option for row 1 and column 2. Line 5 specifies row 2 and column 1.
See the following table for cell numbering in this example.

Vitals Views Screens Vitals Reports
Customer 1 2 3 4
Inventory 5 6 7 8

Sales Rep 9 10 11 12
Invoices 13 14 15 16

Inv Dtl 17 18 19 20

Selection Menu

=| -
Edit Format
HH.41,92,15,1 +

Definition| Delete
{Execute> Rt
{Toggle> Bt

Formats| ###HH
00PS Views| HHHHE

g 1,4,%,-

1 CONHECT HMETHOD O0ODHTA D
2 ON/OFF ALL

3 ON/OFF

L} ON/OFF

[+

A selection menu is a type of matrix menu, and is specified as a matrix menu in line 1 of the definition.
The screen layout and fields are also specified as in a matrix menu. Note that more than one column of
options can be specified if required.

The line after the screen definition specifies the number of columns and rows, followed by the characters to
be passed for the ON and OFF state for each option, as follows:

0 Cols,Rows,PassOn,PassOff,DisplayOn,DisplayOff,DefaultValue

Cols number of columns of options to be displayed in the matrix.

Rows number of rows of options to display.

PassOn single character to be passed with directive when option is set ON. The defaultis Y.
PassOff single character to be passed with directive when option is set OFF. The default is N.

DisplayOn string to display in matrix when option is set ON. The default is Yes.
DisplayOff string to display in matrix when option is set OFF. The default is No.
DefaultValue default state for options. The default is No.

57
Copyright © 2021 Thoroughbred Software International, Inc



As with the matrix menu the succeeding lines numbered 1 and above, specify the directives to be
executed when an option is selected. In this example the first option is designed to be used to execute the
OODMTO method, passing message D, while the other options toggle the values of parameters.

Lines 2, 3 and 4 of the example above contain the ON/OFF directive. They direct the menu to toggle the
value of a parameter between ON and OFF when the user selects the option. ON/OFF ALL on line 2 toggles
all parameters in the menu.

The current values of these parameters are passed to the called method through string array
MSG1$[ALL].

MSG1$[1] Message from CONNECT directive (in this example the string
D)
MSG1$[2] (1,1) [Number of parameters

(2,1) [The PassOn character (in this example "*")
(3,1) |The PassOff character (in this example "-")

(4,n) |The parameter values, in the order R1C1, R1C2, ....
R2CL1 .. to the end.

Help in Menus

OPENworkshop allows you to define the text to be displayed when a user selects Help while a menu is
displayed. A help file may be defined for the entire menu, and also for individual menu lines.

To specify the help text for the entire menu, append \HELP=HELPNAME to the first line of the menu
definition. To specify the help file for individual lines, insert \HELP=HELPNAME at the beginning of
the line.

Note: HELPNAME is the name of your help object.

Menus can also be added to the Help Topics subsystem index. For more information, see the Help Topic
subsystem section earlier in this section.

Security in Menus

OPENworkshop security controls are different from those in Dictionary-1V. Users may be assigned to one
or more security groups, and access to menu options or whole menus can be limited to members of
selected groups.

Security groups are identified by a number. See the Security section of this manual for an explanation of
how groups are managed.

58
Copyright © 2021 Thoroughbred Software International, Inc



=| QEMOD -
Edit Format

i
.WH.20,2,8,1 [61,02] |
'THE' System CONNECT HEHU DEM81; \HELP=DECUSB1Y
Generate Test Data  CONNECT HWETHOD OEGENTD [81]
VIEW QA COMNECT HETHOD DEQAB1
SCREEN QA COMNECT HETHOD DEQAB2
HEHU QA CONNECT HETHOD OEQAB3
SETUP CONNECT HETHOD 006788  [81] o

To specify which security groups may access an entire menu add the security group list to the first line of
the menu definition:

[mm,nn.__]

where mm and nn are the security groups given access. No other users will be able to display the menu.
Any number of groups may be specified.

To limit access to a line on a menu add the security group list to the relevant menu lines. Users who are
not members of these groups will not be able to see or select these lines.

In the sample menu above, members of security groups 01 and 02 may access the menu, but only
members of group 01 will be able to see or access the Generate Test Data or Setup options.

Where security is defined on a per-line basis, OPENworkshop will not display menu lines that are not
available to the current user. To avoid displaying a blank line, OPENworkshop suppresses these lines,
resulting in a vertically shortened menu display. If you wish to ensure that such a menu is displayed so
that the bottom line of the menu remains in the same place, append the T character to the security group
list. For example:

[01,02,T]

on a menu line allows groups 01 and 02 to see the line. All other users will see only the remaining menu
lines, but in this case the window will be displayed starting one line lower on the screen.

NOTE: Security on a per-line basis is not available for selection menus.

59
Copyright © 2021 Thoroughbred Software International, Inc



Query

A query creates a result that can be listed on the screen or printed to a file or printer. A sample query
follows:

=]
Customer name Customer sales Customer discount
ACHE Inc. 17222.36 38.00
Computer Inc. 16628.04 34.00
Deleted custs .08 .80
Fix-H-Up 16253.36 32.00
Lumber Inc. 17442.00 40.00
Hemory Lanes 18318.16 4,80
0K Development 17689.96 42.080
TEMP CUSTA 13759.88 29.00
TEMP CUST2 13226.85 35.00
TEMP CUSTA 15135.78 29.80
Today's Company 16951.04 36.00
Toot-Your-Horn 15827.08 30.00
178366.35

Select the Query Header view to create or maintain queries:

> Query Yiew < [ _ 5] =]
Query A |[L L [LastChng LastChng Create
Hame Query Description F E |S Date Time Date

0EQ1 TEST 83/22/93 18:21:00 |03/22/93
OEQRY1 Sample Query #1 L L (82715796 13:84:48 [11/14/89
guset Sample Query #1 L L |82/04%/96 12:13:15 |[11/14/89
quse2 Sample Query #2 L L |89/11/93 12:39:36 |11/14/89
Q4583 Sample Query #3 L L [12/96/89 @89:21:36 [11/15/89
Q4S04 Sample Query H4 L L [12/86/89 89:22:12 [11/14/89
Q4S65 Sample Query HS L L [12/86/89 89:22:48 [11/14/89
Q4586 Sample Query Hé L 12/706/89 09:23:24 11714789
quse7 Sample Query H7 L 12/86/89 A9:24:00 |11/14/89
Q4568 Sample Query H8 L 12/06/89 89:24:36 |[11/14/89
Q4589 Sample Query H? L 12786789 B89:25:12 |[11/14/89
ke[l v]> [« ] ol

To edit an existing query move to the row and select Edit (F1). To create a new query, select Line Insert,
type a name and description for the menu and then select Edit to edit the new definition. To delete a
query, select Line Delete.

Queries are executed using the CONNECT QUERY directive.

For more information on queries, see the Query-1V Reference Manual.

Information can be passed to Query-IV through the QUERY$ string array. See the QUERY$ section of
this manual.

60

Copyright © 2021 Thoroughbred Software International, Inc



Report

Creates a report that can be listed on the screen or printed to a file or printer. A sample report follows:

-]

OE-RCUST Sample System - Customer Listing Page: 1
B4/81/96 18:16 AH

Cust

Code --- Contact -—- -—-——-—- Hame -———- --——-- City -—— St SR - Sales --
108188 Tex Rogers Toot-Your-Horn Port Lavaca T4 AF  15,827.68
1868181 David Kelly Fix-H-Up Seadrift Td HP  16,253.36
188182 Sue Thompson Computer Inc. Hadison N JJ  16,628.8%
186183 Robert Brock Today's Company  Bridgewater NJ J5  16,951.84
18810% Sarah Smith ACHE Inc. Dayton HJ AF  17,222.36
188185 Walter Snider Lumber Inc. Big Horn HD HP  17,442.88
188106 Dennis Gohlke OK Development Port Lavaca Td JJ  17,689.96
188187 John Dworaczyk  Memory Lanes Victoria TR JS  18,310.16
222221 TEHP CUST1 TEHP CUSTA Port Lavaca Td 21 13,759.80
222222 TEHWP CUST2 TEHP CUST2 Port Lavaca Td 22 13,226.85
22222 TEHWP CUSTA TEHP CUSTA Port Lavaca Td JJ 15,135.78
222222 Deleted custs Deleted custs 22 .68

178,366.35

Select the Report Header view to create or maintain reports:

> Report Yiew < [_[Cfx]

Report R [Rep LastChng |[LastPrnt [Create
Hame Report Description T Wid |[Pud Date Date Date

4GLCER SCRIPT-IV Compile Error Listing R| 88 87/17/96 |87/23/797 |82/13/M1
IDAUDIT |[IDOL-IV Audit Report R 88 18/26/94 (B6/18/796 (81718794
IDPRTHHT |Printer Table HMaintenance Hard Copy |R ] B6/18/96 (BB/84/93
IDROPER |Operator Listing R 88 11/18/97 |11/12797 [11/07/97
IDRPER REPORT-IVU Phase Error Listing R 88 B6/18/96 (B2/13/M1
IDRSRTR1 |Sort Rebuild Log Report R| 93 88/81/95 |@5/15/97 |[12/20/93

I

R

R

R

R

IDRSTART |Hew Report Definition Skeleton 88 B5/16/94 |B6/18/96 |B5/27/85
IDRSTAT1 [IDOL-IV Operator Statistics Report 128 B9/85/95 |B6/18/96 (81724704
DEQRYA SAMPLE 1 132 83/16/%4 82/89/92
DERCUST |Sample System — Customer Listing 8a 08/02/96 |01/22/98 |88/21/92
OERINUD |Sample System - Invoice Detail List ] B2/15/96 [11/12/96 [11/12/92

K<+ > [n]«] 0

To edit an existing report move to the row and select Edit (F1). To create a new report select Line Insert,
type a name and description for the menu and then select Edit to edit the new definition. To delete a
report select Line Delete.

Reports are executed using the CONNECT REPORT directive.

For more information on reports, see the Report-1V Reference Manual.

Information can be passed to Report-1V through the REPORTS$ string array. See the REPORT$ section of
this manual.

61

Copyright © 2021 Thoroughbred Software International, Inc



Screen

A screen displays data in a character or graphic format (if VIP is installed) and may also allow data to be

input. A screen displays information from a single record in the underlying file, as shown in the example
below.

=-I Customer file
Customer Code:
Company Name: [ACME Inc. |

Contact: |5arah Smith |
Address: |345 Elm Street |

Ciky: | Dayton |

State: Zip:
Phone: |608 564-3200 |

Credit Limit: Dis-::uunt:
Sales: [ 17222386 |

Sales Rep: [ AMbert Fisher |

Comments: I:l

Select the Screen Header view to maintain or add screens:

> Screen Yiew < M= ER
Screen Link/Fmt U nfter Screen Hdr |LastChng [Create
Hame Hame Description F Read HMth Help Typ Date Date
LGCLSEL  |4GCPSEL  |A4GL - Compile List Select ¥ 11/083/97 |83/25/85
4GCPSEL  |4GCPSEL  |A4GL - Compile Select ¥ 85/22/97 |83/25/85
4GDIRDET |4GPGMHDR |A4GL Script list H 86724796 |07/28/87
4GDIRHDR |IDLIBR 4GL - Program Library Listin/H 92/06/96 |92/19/86
4GDISEL [4GCPSEL |A4GL - Library List Select H 92/086/96 |A3/25/85
LGLSSEL  [4GCPSEL  |A4GL - Program List Select H 92/086/96 |@3/25/85
4GPGHLST |4GPGHMHDR |4GL List Script Definitions |H 92/086/96 |87/28/87
LEPROG LEPROG Script Editor ¥ 92/086/96 |@5/22/86
LGPROGA | LGPROG Script Editor N 92/86/96 |@5/22/86
LSBOTSCR |4SSALDT (BOTTOM OF SCREEH N g2/22/88 |92/20/88
LSEXA1 LSEXA1 SCRIPT-IU Sample: Line Offse/H 92/29/88 |11/28/87
K{<[+ (s[> | |

OPENworkshop maintains the following objects and attributes associated with a screen:

Column Attribute

Link/Format Name [The link or format used by the screen to locate the required data for the
screen.

Description A text description of the screen and its purpose.

After Read Method |After data has been read from a file and before it is displayed to the user in
a screen, an optional after read method can be used to prepare the data for
display. This method may be used, for example, to prepare calculated
fields. See the description of after read methods for more information.

62

Copyright © 2021 Thoroughbred Software International, Inc



Column Attribute

Screen Help Specifies the help file that should be used to offer context-sensitive help
for this screen.

Hdr Type Header Type.
C = Centered
L = Left aligned

R = Right aligned
space = no header

OPENworkshop uses the description as the header.
Other Columns Maintained by OPENworkshop

To edit an existing screen definition put the cursor in the row that contains the definition and select Edit
(F1). To change the name of, or to copy an existing screen, type the new name and choose the options for
the subsequent menus, which will display. To create a definition of a new screen select Line Insert, type
a name for the new screen, then select Edit to edit the new definition.

The following display was the result of selecting Edit for the OESCUST screen:

> Screen Yiew < o= X—l
q Create
Date
UTCUST  [UTCUST  |Sample Customer File ¥ Delete ko7 [03/23/95
UTFORMAT |UTFORMAT |Convert Report to REPORT-IV |H Inquiry koo [09/16/88
UTINU UTINU Sample Invoice Collection s [ 82/86/96 |88/10/92
H 5ample Customer File =] S 11712797 12729787
B2/06/96 |B7/31/86
ﬂ#ﬂ Thoroughbred Saftware International, Inc 02/05/98 86706795 |B7/31/86
B2/06/96 |B7731/86
B2/06/96 |B7/31/86
Customer  Code.: [ 87/18/95 |@3/15/88
Customer  Mame..: B7/18/95 |B3/15/88
Addess - 87/18/95 |@3/15/88
City. ... 1
State.......... [
Zip Code.....:
Fhore..........:
Fep Code...: l_
TEms. ... ¥
Credit  Limit... 1
Credit  Comments [
Open AR Balance:
YTD Sales..... I—

OPENworkshop displays the current screen definition, consisting of a template background and a number
of data fields that display and collect data values.

The following table provides an overview of the functions available for changing a screen definition in
character mode. For more information, see on-line help or the Dictionary-1VV Reference Manual. For more
information about changing a graphic screen see the VIP for Dictionary-1V Reference Manual.

63
Copyright © 2021 Thoroughbred Software International, Inc



Below is a list of screen editor functions:

Key |Function Description

F1 |Preview Code Characters [Displays the screen with all of the special code characters
converted.

F2 |Delete data field Deletes the data field from the screen, but does not affect the
underlying format definition.

F3 |Move data field Moves the field within the Screen.

F4 |End Ends the editing session, giving you the choice of saving or

discarding the changes made.

F5 |Data field Creates a data field in the screen definition. The field can
display data from the underlying format or may be a
calculated field for display only.

F6 |Help Displays help for the help file editor.

F7 |Special Functions A menu of special functions as follows:

F8 |Print window Prints the screen definition.

F10 |Display data elements Displays a list of data elements from the current format.
F15 |Edit mode options Switches editing between editing characters and editing

graphics characters.

F16 |Print Prints the screen.
View

A view displays data from one or more files in rows and columns. If the developer has allowed it, the user
can edit data by selecting the required cell and typing. The following example shows the Customer File
view from the sample application supplied with OPENworkshop.

» Object Yiews < | _ (=] =]
Uiew Link K DDUEZ2BECECDIC|HView Help SortMenu UVw |LastChng |Created
Hame Hame Uiew Description C CHCSPHMT|D|D M HMethod Hame Hame Pud |Date Date
BDHUHS 8DHUKS Humeric Types Y |Y|¥Y|Y|H D |F [E D 06/30/93
IDBHELF |IDBHELP IDOL IU - HELP Form¥ |¥ |¥ |Y |H D |F [E D |N 07/08/97 [06/11/93
IDBSCUC1 |IDSSCLC1 |Compile Error File |M |[M |Y |¥ [N |Y |D [F |F |D |D 82/87/97 [85/18/89
IDBSCUC2 |IDBSCLC2 [Compile IFDEF Defin(y ¥ |Y |Y (M |Y |D |F |E (D |D 82/21/97 [86/18/90
IDBSCUDA |IDBSCLDA [Library File Uiew (¥ ¥ |¥ [¥Y M |Y D |F |E [H|D 83/85/97 |09/19/98
IDBSCUF1 |ID8SCLF1 |Source Lock Detail:|¥ ¥ |Y |Y |H D |F [F [H|D 88/31/93 [88/26/93
IDBSCUF2 |ID8SCLF2 |Source Lock Detail:¥ (¥ |Y¥Y |Y |H D |F [F [H|D 08/30/93 (08/26/93
IDBSCUF3 |ID8SCLF3 |Source Lock Detail,|¥ ¥ |Y |Y |H D |F [E [H|D B8/26/93 [B8/26/93
IDBSCUSH |IDBSCLSO |Source File Uiew ¥ Y |¥Y[¥Y Y |Y|D[F|E|D|D 85713797 [B4/15/92
IDBSCUS1 |IDBSCLS3 |Currently Locked So¥ |Y |Y |Y (¥ |Y D [F |F DD 83714797 |B8/89/98
IDBSCUS2 |IDSSCLS2 [Backup Source File [¥ |¥ |¥ |¥ [H ¥ [D |F |[E [D [D |H 87/14/97 [87/09/90
K| < r el >l ] 2
64

Copyright © 2021 Thoroughbred Software International, Inc



Selecting Actions

As the user moves from cell to cell in the view the actions available to the user change, depending on the
pre-process directives defined in the relevant data element names.

Special Prompts are used to display available selections for the column. For more information, see
Special Prompts later in this section.

On a character terminal this list is displayed on line 0 of the visual display, and options are chosen by the
user pressing a function key.

On a graphical workstation special prompts are displayed in the status bar of the GUI Server window.
Press the function keys or click the right mouse button for a table view of available CONNECTS.

Moving Around The View on a Character Terminal

While in a view the user can move horizontally from cell to cell. The shaded display area to the left of the
vertical bar contains fixed columns. To the right of the bar, columns can be scrolled horizontally. Pressing
the Tab key when the cursor is in the right-most column, scrolls to the right. Pressing Back Tab when in

the column immediately to the right of the vertical bar scrolls to the left. Using the Left Arrow and Right
Arrow keys moves the cursor left or right through the columns that are visible.

The Home key provides four levels of operation, depending on where you are in the view. At the first
press the cursor is moved to the first column of the current line. At the second consecutive press it moves
to the first cell on the current display. At the third consecutive press it moves to the first cell of the entire
view. A fourth press goes to the end of the file, i.e., the last record of the view.

Vertical movement through the view can be done a line at a time using the Up Arrow and Down Arrow
keys. Page Up and Page Down move the display by the number of lines in the window.

Changing a View

Certain attributes of a view can be modified while the view is displayed. All of the facilities shown in this
section are available to developers. Users are prevented from using facilities marked below as developers.

Change Sort Sequence

Select Sort (F5) to display a list of the sort sequences available. When you have selected a sequence the
view is redisplayed using that sequence.

Delete Column (Developers)
Press Delete to delete the current column from a view.
Insert Column (Developers)

Press Insert to insert a new column in the view, or to recover a deleted column. OPENworkshop displays
a list of data element names for selection. Highlight the required name and press Enter to insert before, or
press right arrow to insert after, the current column. If you wish to add a column that is not in the list
provided, select a blank name (initially A, after A has been used B etc.). You will be asked to supply the
link and data element name for the data to be displayed in the new column. The key to the file containing
the proposed data element name must be in the current view.

65

Copyright © 2021 Thoroughbred Software International, Inc



Delete Row

Press Line Delete to delete the current row. The data will be removed from the data file.
Insert Row

Press Line Insert to insert a new line before the current line.

F7 Special Functions

Select F7 Special functions and the system displays the following:

Special functions
iage return mode
Display datanames
Display descriptions

Carriage return mode
Controls the direction the lightbar will move after field editing. Valid directions
are right, left, up, and down.

Display datanames
Turns the data name display feature on and off. When on, the following
information about the current column appears at the bottom of the view:

Data element name.

Maximum entry length of the field.
Current width of the column.

Carriage return direction mode (Enter key).

CUST-CODE Data Name

(@) Current column width
(8) Maximum field entry length
<CR>=D Carriage return mode

66

Copyright © 2021 Thoroughbred Software International, Inc



Display descriptions

View edit

Turns the description display feature on and off. When on, the following
information about the current column appears at the bottom of the view.

Data element description (defined in format).

Customer Code Data element description.

Allows modifications to the view specifications. Each specification that can be
modified will have Help available (F6). If access is denied to this function, see
your system administrator for additional explanation.

Name: UTCUST (II{EMDemo Customer File

Key changes : Border heading.: D {D,V,B,N)
Data changes H CR action F (F,S,s,E)
Display headings: Cursor type E {C,E,F)

Uiew alterations: DN/Desc display: d {N,D,d)
Sort seq changes:
Print zero's

Help

Key changes
Controls the ability to add, delete, and modify records and to use F8 CHANGE,

DELETE, COPY, and MOVE commands in a view. Select one of the following:

Y Allows changes to the key fields in the view.
N Does not allow you to change the key fields.

Data changes
Controls the ability to add, delete, and modify records and to use F8 CHANGE,

DELETE, COPY, and MOVE commands in a view. Select one of the following:

Y Allows changes to the non-key fields in the view.
N Does not allow you to change the non-key fields.

Display headings
Turns on or off the view headings. Select one of the following:

Y Displays the heading lines.
N Does not display the heading lines.
67

Copyright © 2021 Thoroughbred Software International, Inc



View alterations
Controls the ability to delete or insert columns or to save a view. Select one of
the following:

Y Allows view specification changes.
N Does not allow view specification changes.

Sort seq changes
Turn on or off the ability to use F5 Sort to select a different sort sequence. Select
one of the following:

Y Allows view sort changes.
N Does not allow view sort changes.
Print zeros

Display/print zeros or blanks for the numeric value zero. Select one of the
following:

Y Prints zeros (0) when the numeric data is zero (0).
N Prints blanks when the numeric data is zero (0).

Border heading
Contains view window heading specifications. The headings always display in

the top border of the view window. Select one of the following:

D The view description is centered in the top border.
V The eight-character view name is displayed in the left-
most top border.
B Both the eight-character view name and description
are displayed in the top border.
N No headings display in the top border.
CR Action

Defines the action of the Enter key while in the view. Select one of the
following:

F Enter the normal field edit mode.
S Enter screen maintenance.
S Enter screen maintenance and return to View after
record is edited.
E Exit the view.
68

Copyright © 2021 Thoroughbred Software International, Inc



Cursor type
Defines the view lightbar specifications. Select one of the following:

C One character cursor marks the column/row
intersection.

E Full field lightbar marks the column/row intersection.

F The full row is marked with the lightbar.

DN/Desc display
Displays the data names in the bottom border of the view flag. Select one of the
following:

N Do not display the data name or description.
D Display the data name.
d Display the data name description.

CR direction

Defines the direction of the lightbar movement after pressing the Enter key to
modify a field. Select one of the following:

U The lightbar goes up to the prior row.

D The lightbar goes down to the next row.

L The lightbar goes left to the previous column.
R The lightbar goes right to the next column.

Help
Contains the name of the help module, which provides the text, to use for the

view under the application help option.

Sort Menu

Contains the name of a menu to be used in place of the default selection pop-up
menu. This menu can be more application specific than the default sort selection
menu.

Example:

In a customer file you may decide to restrict usage of a sort on sales. You may
create a custom sort menu that does not include this sales sort.

69
Copyright © 2021 Thoroughbred Software International, Inc



When defining a sort menu, you must return a valid sort number with each
selection contained in the developer-supplied menu.

For example:

.MN.13,4,65,1
Customer Name
Salesrep

State

Zip Code

A LW N =

It also allows you to present the data in a more readable display.

View Method

Contains the name of a developer supplied method that will be called each time a
view row is to be displayed. The method will build all new column values that
have been defined by new columns A<x> through Z<x>. The view method is
specified in the view header.

Link edit
Displays the Link Definition for this View. You may edit this definition and
sorts. For more information see Link Definition in the Dictionary-1V Developer
Guide.

If the system denies you access to this function see your system administrator for
assistance.

Format edit
Displays the Format Definition for this View. You may edit this definition. For
more information see Format Definition in the Dictionary-1V Developer Guide.

If the system denies you access to this function see your system administrator for
assistance.

Prompt edit
Modifies the help text containing view/screen prompts that were referenced by
VP[n] or SP[n]. For more information, see Format Definition in the
Dictionary-1V Developer Guide.

70
Copyright © 2021 Thoroughbred Software International, Inc



Headings

Activates the heading edit mode. If headings have not been defined for a view,
one blank line will be inserted and the entire view is shifted down. Once in
heading edit mode, the Arrow and Tab keys can be used to select the desired
column. You may type the desired heading values. Use the Line Insert key to
add as many heading lines as desired.

To remove a heading line press Line Delete. Press F4 to exit heading mode.

You may make the column width larger than the field length defined in the
format. This does not allow you to change the length of the data entered in the
column, but it does allow you to increase the width of the heading.

For example: If you have a 2-character State column, you may press F7, select
Column width, and increase the size to 5. This still only allows 2-character data
entry, but allows you a 5-character heading. You may now type the heading
State.

Lock columns

Save view

Source-1V

Locks and unlocks columns to the left of and including the column on which the
lightbar is located. A vertical line designates a locked column. These columns
remain stationary when scrolling in the view.

If two columns were locked, the vertical line would be placed to the right of
the Customer Name column. These two columns then remain stationary when
scrolling in the view.

Saves the view. The save process preserves all view attributes including deleted
and locked columns, reduced field sizes, sort pattern, and any view size. There is
no prompt for a view name or confirmation of changes.

Displays the Source-1V menu and allows you to make selections. This function is
only available if the environment is defined as an OPENworkshop Development
environment.

For more information see the Source-1V and OPENworkshop reference manuals.

71
Copyright © 2021 Thoroughbred Software International, Inc



DICTIONARY
Displays the following menu:

This function is only available if the environment is defined as an
OPENworkshop development environment.

For more information about the Class Definitions see the Dictionary-1VV
Developer Guide.

F8 View Commands

Select F8 while in a view to obtain a menu of commands that can be used on the view. These commands
perform frequently required operations, saving the developer from the need to implement them.

Security

The developer can prevent access to specific commands by setting appropriate security groups in the
default F8 command menu OOM2.

Custom F8 Command menus can be created in order to provide limited F8 functionality when the user
mode is set to USERS. This can be done at anytime by creating an OPENworkshop startup method and
setting the global format #IDSV.VIEW-USR-CMD set to the name of the F8 Command window to be
displayed from a View. This is useful if you do not want your users to be able to access F8 commands
like COPY, MOVE, DELETE, SUM, COUNT. If #IDSV.VIEW-USR-CMD is not set the default menu
OOM2 will be used.

72
Copyright © 2021 Thoroughbred Software International, Inc



For convenience a modified version of OOM2 named OOM2USR is distributed with OPENworkshop.
This version of the command window limits options to LIST, PRINT, QUERY, CHART, EXPORT, and
EXCEL.

SELECT

Many of the F8 commands make use of the standard OPENworkshop SELECT window:

SORT: B RANGE From:

To:
SELECT WHEM:

SORT: The Link sort number by which the requested command will be sequenced. F2 will allow a valid
sort definition to be selected from a pop-up menu.

RANGE From: The selected command will include the data starting with the RANGE From key value.
RANGE To: The selected command will include the data ending with the RANGE To key value.

SELECT WHEN: Select conditional expression. The conditional expression may contain any relational
operators allowed in the IDOL-IV Script language.

F2 will allow valid data names to be selected from a pop-up menu.
F3 will allow the select statement to be edited in the Text Editor.
Any date mask valid for NTD() is valid in the SELECT statement with date type 8 fields.

Example select statements:
#FORMAT.DNL1 = “XYZ”
#FORMAT.DN2 > 10 AND #FORMAT.DN3 < 6
CDN - #FORMAT.DUE-DATE < 30
#FORMAT.DUE-DATE(dd) = “01”
#FORMAT.DUE-DATE(Mon) = “Jan”
#FORMAT.DUE-DATE(Dy)="Fri”
#FORMAT.DUE-DATE(YYYY) = NTD(CDN,”YYYY?”)

A secure SELECT WHEN clause provides the developer with the ability to control what records are
displayed in the view while preventing the user from changing or seeing the secured SELECT WHEN. A
secure SELECT WHEN is never displayed in the F8 Selection. The user retains the ability to enter a
SELECT WHEN clause. The user defined SELECT WHEN will be appended to the "hidden" secure
SELECT WHEN clause.

To hide the SELECT clause from the user, enable the Secure Select When option by setting
VIEW$[13](8,1)="Y".

For more information on the VIEWS$[ALL] array, please see the online help: CONNECT HELP,
CONNECT VIEW, VIEW MSG array.

73
Copyright © 2021 Thoroughbred Software International, Inc



Commands
COUNT

Counts the rows in the view. This command allows the user to select a range of records and a SELECT
WHEN rule to control what is counted.

LIST

Re-lists rows in the view. The command allows the user to select a new sort sequence, a range of records
and a SELECT WHEN rule to control what is listed. This command is useful when you temporarily want
to restrict the number of rows displayed.

The LIST option also supports text field search rules to further refine the selection results. Only those
records meeting all the selection criteria including the text field search will be included in the results.
When the LIST option is selected the following SELECT window is displayed. This is only available with
the LIST option.

[ ]
SORT: @Y RAMGE From:

To:
SELECT ‘wWHEM:

Search Text Fields (v MI: M

Search Text Fields (Y/N): By default this option is set to “N”. Enter “Y™ to enter text field search
criteria.

h Criteria =

Case Sensitive [¥/MN): Exact Match [Y Mi: M

Any of these terms:

jor

ALl of these terms:
and

Mone of these terms:
jor

Exact Phrase:

Case Sensitive (Y/N): By default the case sensitive option is not enabled. For example searching for the
term "View" would return a result for all of the following words: "View", "VIEW", and "view". Enable
the Case Sensitive option to return a result only for the term "VIEW", or only for the term "View", or
only for the term "view".

Exact Match (Y/N): By default the exact match option is not enabled. Results are returned if the search
term is found in any form within the text. It is equivalent to the wildcard *term*. For example searching
for the term "View" will return a result for all of the following words: "View", "VIEW$", "view-name",
and "8VIEWF". When the exact match option is enabled only the words "View" and "VIEW" will return
a result.

74
Copyright © 2021 Thoroughbred Software International, Inc



Any of these terms: This search option uses the OR relational operator.
All of these terms: This search option uses the AND relational operator.
None of these terms: This search option uses the NOT relational operator.

Exact Phrase: This search option will only return a result when the exact phrase is matched. When
searching for a phrase, do not specify All, Any, or Not terms

SUM

Sums values in a column. This command allows the columns to be summed to be restricted using a range
and a SELECT WHEN rule.

CHANGE

Performs a bulk change on the data in a view, changing all rows that fit within the specified range and
SELECT WHEN rule. As an option, the user is able to request confirmation on a row-by-row basis.

PRINT

Prints the rows in a view. The rows to be printed can be restricted using a range and SELECT WHEN
rule. The sort sequence in which the rows are to be printed can be specified.

COPY

Copies data from the current view to another file. The rows to be copied can be restricted using a range
and a SELECT WHEN rule. The user is able to ask to approve each row, or approve overwriting of
existing rows in the file being copied to.

This command is a useful way to copy data from one file to another.

MOVE

Moves data from the current view to another file. The same controls as the Copy command are provided,
but moved data is deleted from the source view. Therefore, use this command with care.

DELETE

Deletes rows from a view and its underlying file. A range and the SELECT WHEN rule can restrict what
is deleted. The user can ask to approve deletion of each row.

EXPORT

This option exports the data currently displayed in the current View to a .txt file. The file is created in the
default data file directory defined by #IDSV.DISK.NBR-DATAFILES.

SORT: B RANGE From:

To:
SELECT WHEH:

75
Copyright © 2021 Thoroughbred Software International, Inc



When you have selected the range press Enter and you will see the following window. Note SORTO is the
default sort.

The requested data is in file:

Ffdevel/basic/IDLA4Ss1s_4GPROG.txt

EXCEL

This option exports the data displayed in the current View to an Excel spreadsheet on the Windows
workstation using Thoroughbred's Gateway for Windows product. The data to be exported can be refined
by specifying a SORT, RANGE From/To, and a SELECT WHEN clause.

SORT: B! RANGE From:
To:

SELECT WHEH:

Excel will be launched and the spreadsheet will be populated with data from the View based on the
SORT, RANGE From/To, and SELECT WHEN clause.

A new Excel workbook is created each time Excel is selected for output. To switch between workbooks
select the appropriate Microsoft Excel Book in the task bar. Or from the Excel menubar select Window
and then select the appropriate Book (window).

76
Copyright © 2021 Thoroughbred Software International, Inc



NOTE: A secure SELECT WHEN clause in VIEW$[7] provides the developer with the ability to control
what records are displayed in the view while preventing the user from changing or seeing the secured
SELECT WHEN. A secure SELECT WHEN is never displayed in the F8 Selection.

The user retains the ability to enter a SELECT WHEN clause. The user defined SELECT WHEN will be
appended to the "hidden" secure SELECT WHEN clause.

The secure select clause is enabled by setting VIEW$[13](8,1)="Y".

3GL Example:
DIM VIEW$[13];
VIEW$[1]="OEVCUST",
VIEWS[7]=""SELECT WHEN #OEFCUST.SR-CODE ="+QUO+"HP"'+QUO,
VIEW$[13]="" Y
CALL "OO03A"™,VIEWS$[ALL]

4GL Example:
DIM VIEW$[13]
LET VIEW$[1]=""OEVCUST",
VIEWS$[7]=""SELECT WHEN #OEFCUST .SR-CODE ="'+QUO+'""HP"'+QUO,
VIEW$[13]="" &
CONNECT VIEW "OEVCUST"

For more information on the VIEWS$[ALL] array, please see the online help: CONNECT HELP,
CONNECT VIEW, VIEW MSG array.

F8 Functionality for USERS

Create a custom F8 Command menu in order to provide limited F8 functionality when the user mode is
set to USERS.

This can be done at anytime by creating an OPENworkshop startup method and setting the global format
#IDSV.VIEW-USR-CMD set to the name of the F8 Command window to be displayed from a View.
This is useful if you do not want your users to be able to access F8 commands like COPY, MOVE,
DELETE, SUM, COUNT.

If #1DSV.VIEW-USR-CMD is not set the default menu OOM2 will be used.

For convenience a modified version of OOM2 named OOM2USR is distributed with OPENworkshop.
This version of the command window limits options to LIST, PRINT, QUERY, CHART, EXPORT, and
EXCEL.

Single Record Maintenance (F9)

Select Single Record Maintenance (F9) to display a screen showing the current row in more detail. The

screen that will be displayed will normally be defined in the link definition. If a screen was not specified
in the link definition, a default screen will be generated.

77
Copyright © 2021 Thoroughbred Software International, Inc




Press F9 from a screen to display a view starting with the current record. The view that will be displayed
will normally be defined in the link definition. If a view was not specified in the link definition, a screen

will be displayed that allows a link name to be entered. The view will be created from the link name
entered.

Format Editor (F11)

The data element name definition is displayed within a text editor that can be edited using the editor.
Attributes are shown in the first line of the file, and succeeding lines display directives that define Valid
Values, messages, pre- and post-processing directives and other definitions for the data element name.

Select F11 to display the following window:

[E] DOFVIEW: DOPS View Header
Fld F Help K E NP D ¥ Format
Hum ----— Dats Neme------ ----Size---- 5 Code ¥ T T D T N Offset eu Hel
thod Ham

2 VIEW-NAME g N HDEK YOoOOoOONW 2
... 3pecial Prompl:
VvP[1]
...... Fre Process:
WRITE NEWR;
CONNECT (1) METHOD 003
CONNECT [2) METHOD 003 ;
CONNECT (3) METHOD QONAAD D,V

e[ r[e > an]«] | |

This definition contains directives organized into sections. The editor assists in creating headers for these
sections, and handles indentation.

Create/Maintain View

To create a new view or maintain existing views move to the View Header, as shown below:

> Dbject Views < &= 3
Uiew Link KDppDWVWIECZEBECLCEC|DEC|HN©View Help SortMenu (W@ |LastChng [Created
Hame Hame Uiew Description CcHIC|S|PHM[TDD|H Hethod Hame Hame Pud |Date Date
8DNHUMS 8DHUHS Numeric Types YiY|¥I[¥YIN D |F|E D 86/38/93
IDEHELP |IDBHELP |IDOL IV - HELP FormY |¥ |¥ |¥ |N D |F [E D [H 87788797 |86/11/93
IDSSCUC] |IDBSCLCY |Compile Error File (M |H |Y |¥ |H|¥ |D [F |F (D |D 82787797 |85/18/89
ID8SCUC2 |IDBSCLC2 |Compile IFDEF Defim¥ [Y¥ (¥ |Y [H Y |D |F [E [D |D 82/21/97 |86/18/98
ID8SCUDB |IDBSCLDA |Library File Uiew |¥ |¥ |Y |Y |[H|¥Y |D [F|E[H|D 83/85/97 |@9/19/98
ID8SCUF1 |IDBSCLF1 |Source Lock Detail:|¥ |¥ |¥ |¥ |N D |F |[F [N |D 88/31/93 |08/26/93
ID8SCUF2 |IDBSCLF2 |Source Lock Detail:|¥ |¥ |¥ |¥ |N D |F |F [N|D 08/30/93 |08/26/93
ID8SCUF3 |IDBSCLF3 |Source Lock Detail,|¥ |¥ |¥ |¥ |N D |F |E |N|D 88/26/93 |08/26/93
ID8SCUSH |IPBSCLSA |Source File View Yy Y[y |¥ (Y |D|FI|E|[D|D 85713797 |04/15/92
ID8SCUST [IDBSCLS3 [Currently Locked So¥ |Y |¥ (¥ |¥ (Y (D [F |F (D |D 83714797 |98/89/98
ID8SCUS2 |IDPBSCLS2 |Backup Source File |V |¥ |Y |¥ [H|¥Y D [F |E [D |D [H B7/14/97 |07/09/90
K< [+ %[> [n]xl] 2

To edit an existing View definition, position the cursor to the required row and select Edit (F1). To
change the name of, or to copy an existing view, type the new name and choose the option required from
the succeeding menu. To create a definition of a new view select Line Insert, type a name for the new
screen, then with the highlight on the name field select Edit (F1) to edit the new definition.

78
Copyright © 2021 Thoroughbred Software International, Inc



OPENworkshop maintains the following objects and attributes for a view:

Column

Attribute

Link Name

The link used by the view to locate the required data for the view.

KC

Key Change. Value Y allows the key data to be changed by the user. N
prevents change.

DC

Data Change. Value Y allows non-key data in the view to be changed by
the user. N prevents change.

DH

Display Headings. Value Y causes the view heading (column headings) to
be displayed. N switches them off.

VC

View Changes. Value Y allows the specification of the view to be changed
by the user. N prevents change.

CS

Change Sort. Value Y allows the sort used for data displayed in the view to
be changed. N prevents change.

ZP

Zero Print. Where a data item is zero is can be displayed in the view as a
"0" character (ZP =Y), or as a blank (ZP = N).

BH

Border Heading. An eight-character view name is displayed in the
left-most top border (BH = V), the view description is centered in the top
border (BH = D), Both the eight character view name and description are
displayed in the top border (BH = B), or No headings display in the top
border (BH = N).

CM

CR Mode. Controls the behavior of the view when the user presses Enter.
Value F: enter Field Edit. S: enter associated Screen. E: exit and return the
key value for the current row to the caller. See description of the VIEW$
array. See the VIEWS$ section of this manual.

CT

Cursor Type. Value C displays a single-character cursor. E: highlight the
current field. F: highlight to full row.

DD

Display Data Element Name. The name is displayed at the bottom left
corner of the border. D: display the data element name. d: display the data
element name description. N: none.

CD

CR Direction. After user presses Enter, move to the next cell D: Down, L:
Left, R: Right, U: Up.

View Method

Called whenever a view has read data for a row and is preparing a row for
display. The view method ensures that all required data items, including
any calculated columns, are available. See the OPENworkshop Methods
section of this manual for more information about view methods.

Help Name

Specifies the help file that should be used to offer context-sensitive help
for this view.

Sort Menu Name

Name of a menu that may be used to help the user select a sort sequence in
which to display the view.

View Password

If security requirements mean that a password should be used to be able to
display the view the required password is specified in this field.

79
Copyright © 2021 Thoroughbred Software International, Inc




Data Classes

Library

A library collects all of the classes relevant to an application or subsystem. A library name is two
alphanumeric characters, which are used to preface all names of classes in the library.

You can explore the library by moving the cursor from cell to cell in the Library Header, an example of
which is shown below:

> Library Yiew < [ _ =] =]
Libr 00Ps |LGL 00Ps |4GL LastChng |[Created
Hame Library Description|Fnts (Scns |Uiew (Uiew Link [Menu HMenu |Msgs |Help Rpts |Qrys [Pud Date Date
4G |4GL Library [i] 9 a 2 15 [i] [i] 2 51 1 [i] 18714/97 |12/19/89
45  |AGL Sample Library 7 ) a 3 ] a a 1 a a a 18714797 12719789
8D |8.n On-Line-Help 7 5 1 12 [i] [i] [i] 1 | 513 a [i] 18714/97 |au/04/90
8U |Tu¥ Library [i] [i] a [i] [i] [i] [i] 8 | 299 a [i] 10714/97 |82/26/96
GU |GUI Executive Vital] 3 4 a a 3 a 1 2 4 1 a 18714797 |B3/04796
ID |IDOL IV Library 126 | 11 36 57 | 181 [i] 4 18 (1752 8 [i] 18714/97 |12/19/89
0E |OPENworkshop Exampl| 13 14 21 9 17 i} i} 1 64 18 2 18714/97 |11/522/95
00 |Object-View Library| 78 56 84 [i] 59 [i] [i] 1 | 738 L [i] 18/714/97 |93/03/92
Q4% |QUERY-IV Library 16 14 2 [i] 18 [i] [i] 2 57 5 a8 18714/97 |83/11/M1
SL |tsi {81/22/98 15:32 2 a 1 a 1 1 1 a 3 a a 81/22/98
§S |tsi (81722798 15:31 1 [i] a [i] [i] [i] [i] [i] [i] a [i] 81722798
kl<[rla >[4l ] ]

Select View Library Formats to display the Format Header view, which lists all formats defined for the
library. View All Formats displays all formats known to the system. Print prints some or all the formats
in the library.

Format

A format collects a set of data element names that will be stored in a single file in the OPENworkshop file
system or that make a logical group for other processing reasons.

To maintain an existing format or to create a new one move to the Format Header view as shown below:

> Format Yiew < M= B
Format Key |Rec Key T |[F1d |LastChng [Create
Hame Format Description Len |Len Fld (I |Sep |Dpate Date
4GCPLERR [Compile Error File 18 88 2/H 8|81/22/98 (A6/01/9%
LGCPSEL  |46L — Compile Select Format 2 21 1/H a8|11/13/97 [98/31/88
LGHELP Dummy format for help a 26 8N 0|88/17/95 (88/27/87
LGPGHHDR |Fourth GL Program Editor 3| 164 2|H 0|88/17/95 (85/22/86
4GPGHMLST |4GL Program List Header 3| 164 2/H 8|88/ 17/95 (85/22/86
4GPROG Fourth GL Program Editor 9| 228 2/H 8 |88/17/95 [85/22/86
4SCUST Customer file 6| 126 1Y @8|85/81/91 [82/01/88
LSCUSTR [Customer file 6| 126 1Y a 82/15/93
LSERA1 SCRIPT-1U Sample: Line Offset ] L8 1/H 08|85/81/91 [11/28/87
4SIHVEN |Inventory file 18 i 1/H A8|85/81/91 (82/01/88
4SHUMS Humeric Types 3| 188 1/H a|10/88/91 [88/22/91
K<+ (el >[o[«f] |

Select Line Insert to add a new format. OPENworkshop creates a new record and waits for you to enter
the format name and description. To delete a format select Line Delete.

80
Copyright © 2021 Thoroughbred Software International, Inc



To modify a format definition, select Edit (F1) to display the Format Maintenance screen:

» Format View < =l E
Format Key Rec Key T Fld LastChng [Create
Hame Format Description Len |Len Fld I |Sep |Date Date
UTCUST Sample Customer File 4 127 1Y 8|02/86/97 (83721791
|UTDELDHS » Format Editor < | _ =] %]
%Fld . . K |F |Help ¥ P D HE U D DI
———— |Hum |————— Data Hame-————- -Field 3ize- [¥Y S |Code HD T T T UIE R
UTFBPRH
— 1 |CUST-CODE L ¥ |H H |8 (@ |8 |8
UIEEGIEL DN 2 |CUST-HAME 30 H |H H |8 (@ |8 @
Luiae, M| 3 |ADDRESS 28 H |H H|B (@ |8 @
(UTFCSTHT 4 |CITY 28 H |H H |8 (8|8 |8
UIEHE LIS 5 |STATE 2 H |H H|B (@ |8 |@
(UTFORMAT 6 |ZIP-CODE 18 H |H H |8 (@ |8 |8
UIERIIE; (. 7 |PHOHNE 18 H |H H|4 (B |8 |8
1< 1* " g [REP-CODE 3 N[N N|o |0 oo
9 | TERHS 1 H |H H |8 (8|8 8%

18 |[CREDIT-LIMIT 6.8 H |H H|B (@ |1 |8

11 [CREDIT-COMHEHNTS 1 H |H H|6 (B |8 |8 |

12 |OPEN-AR-BALAHCE 18.2 H |H H |8 (@ |8 @

13 |YTD-SALES 18.2 H |H H|B (@ |1 |8

Klel+]22]]4] | D

To change an existing data element name move the cursor to the required data element name using Up
Arrow and Down Arrow keys, then select Edit (F1). To insert a new data element name move to the

next blank space and type the required name. Data element names can be reordered in the format by
selecting Move.

For more information on maintaining data element names within a format, see the following subsection.
The Dictionary-1V Developer Guide also provides extensive information.

Data Element Names

A data element name defines an item of information, together with its attributes. A data element hame
definition also specifies methods to be used whenever the data item is created, displayed, or amended.
The attributes, directives, and methods associated with a data element name are defined in a format.

A data element name defines attributes of the data item, such as length, data type, padding, etc. In
addition, it defines directives that control the dynamic behavior of the application when the data element
name is used. Please see on-line help or the Dictionary-1V Developer Guide for an explanation of features

not covered in this section.
Valid Values

As in Dictionary-1V, OPENworkshop will validate user input to a field against values in a list, a range, a
text field, or a lookup file. For more information, see the Dictionary-I1V Developer Guide.

81

Copyright © 2021 Thoroughbred Software International, Inc



See the section on Other Directives later in this section for the full syntax available for Valid Values.

In addition to capabilities provided in Dictionary-1VV, OPENworkshop supports the following directives:
LOOKUP VIEW

Compares the input with key values in the specified view. If the value is present it is accepted, otherwise
the view is opened and a valid value can be selected by scrolling in the view. For more information see
the section on LOOKUP VIEW later in this section.

LOOKUP SCREEN

Specifies a screen that should be displayed when the cursor is in data entry mode and Select Screen (F9)
is selected. Typically this screen will be used to display full information on the item. For more
information see the section on LOOKUP SCREEN later in this section.

Default Values (Preset Values)

Defines a default value that is displayed when the data element name is accessed.

Delete Record

You can specify that a record may only be deleted if the data element name contains a specified value or
condition.

Security

OPENworkshop extends the security facilities of earlier releases of Dictionary-1V. Users may belong to
one or more security groups. A data element name can be specified only to allow access to members of
one or more security groups.

To specify that a data element name should apply security group controls, enter the group or groups
allowed access, surrounded by square brackets, in the security field.

Example
[02,31]

Specifies that only members of security groups 02 and 31 may access the information in this data element
name. This level of security overrides all others described in the Dictionary-1V Reference Manual, but
can be used in conjunction with the previously released features as well.

Special Prompts

OPENworkshop displays prompts to users as they move between data element names in a screen or view.
In a graphical view the prompt is displayed in the help panel of the view. On a character terminal the
prompt is always displayed on the first line of the screen.

These prompts are maintained in the dictionary as a help definition, all special prompts for a format are
grouped in a single help text definition. Each prompt takes one line in the help definition, and prompts are
indexed by line number. The help definition that contains these prompts has the same name as the format.

82
Copyright © 2021 Thoroughbred Software International, Inc



The special prompts field of the data element name definition contains the index to the prompt required
for this data element name. Each data element name may have a view prompt and a screen prompt.

If a screen prompt is specified, it is displayed whenever the cursor is in the data element name in data
entry mode, i.e., in a screen or after data entry mode has been entered in a view.

If a view prompt is specified, it is displayed whenever the cursor is on the data element name in cursor
mode. Additionally, if no screen prompt is specified, the view prompt is displayed when in data entry
mode.

In the Special Prompts or Message field of a data element name

VP[1]:
SP[6]

specifies VP[1] of the Special Prompts help for the relevant format that contains the view prompt and line 6
contains the screen prompt. The Special Prompts help file can be edited by selecting that option when
editing the data element name definition.

Note: For more information, see the section on Defining special prompts later in this section.
Pre-Process

OPENworkshop evaluates and executes any pre-process directives after a data element name has been
read and before data is input in a view or screen. Specifically, the pre-process is activated:

» Inaview, when the operator presses any alphanumeric or punctuation key or presses Enter to choose
data entry mode.

e Inascreen, when the cursor moves to a field.

These directives can be used to prepare the data element name for display, or to offer the user choices in
the functions to perform. Note that a view method can also be specified for a view to prepare a row for
display after a row has been read. For more information, see the OPENworkshop Classes section of this
manual.

In addition to facilities offered by Dictionary-I1V, OPENworkshop supports the following directives:
INSERT METHOD

Specifies a method to be used to prepare a new row in a view after it has been created using Line Insert.
An insert method can only be specified in the first data element name of the primary key of a format. This
directive is available in OPENworkshop only. For more information, see the OPENworkshop Methods
section of this manual.

CONNECT

Passes control to a method, view, screen, help, menu, report or query. In most cases, the CONNECT
directive specifies a function key that the user must press to make the connection. This directive is
available in OPENworkshop and Dictionary-IV.

83
Copyright © 2021 Thoroughbred Software International, Inc



The following directives are only executed by a view, and only after a CONNECT has been selected and
before it is executed.

WRITE MODR

Rewrites a modified row in a view before executing a CONNECT. This directive is available in
OPENworkshop and Dictionary-IV.

WRITE NEWR

Writes the row when a new row has been inserted in a view before executing a CONNECT. This directive
is available in OPENworkshop and Dictionary-1V.

INDENTV

Forces the next view to be displayed indented relative to the current view. This directive is available in
OPENworkshop and Dictionary-1V.

GOTO *

Scrolls the current row to the first row of a view before any CONNECT is executed. This directive is
available in OPENworkshop and Dictionary-1V.

Post-Process

OPENworkshop evaluates and executes post-process directives in a view or screen when the user exits
from data entry mode:

* Inaview, when the user is in data entry mode and presses Enter, or a cursor movement key.

* |nascreen, when the cursor moves out of the field.

In addition to the facilities offered by Dictionary-1V, OPENworkshop supports the following directive:
CONNECT METHOD

Executes the specified method after data input is complete in a screen or a view. If the data element hame
is displayed in a view, the method may return post-processing directives that will be honored by the view
before control is returned to the user. Typically these directives update the displayed row. For more
information see the section on Method Return Directives later in this section.

Audit

OPENworkshop retains the audit capabilities of Dictionary-IV, allowing an audit trail of data changes to
be maintained. For more information, see the Dictionary-IV Developer Guide.

84
Copyright © 2021 Thoroughbred Software International, Inc



Example Data Element Name Defin

The first set of examples is based on the following view, which is taken from the sample application

shipped with OPENworkshop.

itions

=| > Customer File €
Cust Customer Sr Dizcnt||
Code Cuzt Sales| Contact Cugtomer Name Cd |Salez Rep Mam |Cuztomer City | S5t ||
100100  15827.00| Tex Rogers Toot-vour-Haorm AF  Albert Fisher Port Lavaca  Te 0 30000
100101 16253 36| David Kelly Fis-bd-Up HF 'Hermp Phelp: | Seadiift T, 32.["]:
100102 |  16628.04Sue Thompson | Computer Ihc. JJ o Joe Jones tadizon MJ | 34.00
100103 [ 16951.04{Fobert Brock | Today's Company [JS | Jack Sulephen  Bridgewater  RJ | 36.00
100104 | 17222 36| Sarah Smith ACME Inc. AF Albert Fisher Drayton M 3800
100105 [ 17442 00 alter Snider | Lumber |hc. HF Henry Phelpz  BigHom WD | 40000
100106 [ 17609 96( Dennis Gaohlke (0K Development  [L) Joe Jones Part Lavaca  Tx | 4200]#
« | |+
|[S ales representative] <F1> Report By Sales Rep] <F2: Display zales rep view
The following example shows the data element name definition for the Sales Rep column.
=| Fe
Edit Format
12 SR-CODE 2 H H3 B B8N 151 |+
..... Valid Values: n
LODKUP{2) WIEW ODEVSLRP;
INDEHTV;
LET H#OEFCUST.SR-CODE=HOEFSLRP.SR-CODE;
:0IN=HOEFSLRP.SR-CODE;
:DIR="WRITE HMODR";
:DIR="PRIHT ALL";
ENDLET;
LOOKUP SCREEH OESSLRP
...5pecial Prompt:
UPT4] SPL7]
...... Pre Process:
COHHECT {1) REPORT OERCUST,,,%;
CONHECT{2) VIEW DEVSLRP
3]

The Valid Values section validates that data entered is a correct and current code then, if so, accepts the
data and reprints the row. Pre-process directives allow F1 and F2 to trigger a report and connect to a
view.

Defining and Maintaining Data Element Names
OPENworkshop provides two routes for data element name maintenance. The Format Maintenance

screen, shown below, is used to create the data element name. See the Format section earlier in this
manual for how to access the Format Maintenance screen.

85
Copyright © 2021 Thoroughbred Software International, Inc



> Format View < == B3
Format Key [Rec Key T |[Fld |LastChng
Hame Format Description Len |Len Fld |[I |Sep |Date
LGCPLERR |Compile Error File 18 88 2H 8|81/22/98
LGCPSEL |AGL - Compile Select Format 2 21 1|H 8|11/13/97
LGHELP Dummy format for help a 26 BN 8| 88/17/95
LGPGMHDR |Fourth GL Program Editor 3| 164 2N 8| 88/17/95
LGPGHMLST |4GL Program List Header 3| 164 2N 8| B8/17/95
LGPROG Fourth GL Program Editor 9| 228 2N 8|e8/17/95
LSCUST Customer file 6] 126 1Y a|es/a1/91
LSCUSTX |Customer file 6] 126 1Y i)
LSEX81 SCRIPT-IV Sample: Line Offset 6 La 1|H 8|@85/81/M
4LSINUEN |Inventory file 18 i1 1/H 8|@85/81/M
L4LSHUMS Numeric Types 3| 188 1|H 8|18/88/M
K<l a2 ] 2

> Format Editor < = =] E3

Fld F Help ¥ PDHEWUDDS

Hum |————- Data Hame—————- -Field Size- S |Code HNID|TTTIUIEIR|

1 |Customer_Code 3 H N|8 8 |8 (@
Fl Global DN View = E3
Sys K

Data Hame Id i |Format

Customer_Code _ |SLCUST

K| <3 > =] ] ] ]

The cursor is positioned at the first data element name field. Type the first data element name required to

commence the definition.

If the data element name you supply has already been used OPENworkshop will display a view that
allows you to examine the existing definition and use it. You can also press F8 to display a view of all
defined data element names. Data element names can be selected from this view.

Options available when pressing F2:

Display Data Name Detail

Global System Id VIEW

Dataname Where Used (ALL)

Dataname VIEW all systems

Shows detail of the data element name the cursor is located on.

Displays the Global System Definition. For more information, see
the Global Cross Reference System section of this manual.

defined in the global dictionary.

86

Copyright © 2021 Thoroughbred Software International, Inc

Shows the data element name used in the system where format is

Shows a view of all data element names for all systems.



Either select the existing definition or, if this is a new data element name, enter new attributes and
directives in the fields provided. For more information on the attributes available for data element name
definitions, see the Dictionary-1V Developer Guide.

=| Global DN View
Spz [K
D ata-Hame Id y |Format

CUST-HAME 0OE OEFCUST
CUST-MAME OE OEFCUST

{«ll [+]4

To maintain an existing data element name definition you can use the screen shown above, but
OPENworkshop provides a convenient alternative. This option is available whenever the cursor is in the
required data element name field in a view or screen. For example, in the following view select Data
Name Edit (F11).

=| > Customer File <

Cust Cugtamer Sr Dzcht|| ¥
Code Cuzt Sales| Contact Customer Mame Cd |Salez Rep Mam | Customer City | St ||+
100100 15227.00 Tex Rogers Toot-v'our-Horn AF | Albert Fisher Part Lavaca (Tx | 30,00
100101 16253 36 David K.elly Fise-b-Lp HF 'Henrp Phelp: | Seadrift T | 3200 j

100102 16628.04) Sue Thompson | Computer Ihc. JJ o Joe Jones tadison MJ o 34.00
100103 16951.04 Robert Brock | Today's Company 5 | Jack Sulephen | Bridgewater  KJ | 36.00

100104 | 1722236 Sarah Smith ACME Inc. AF  Albert Fisher Dayton MJ | 3B.00
100105 1744200 alker Snider | Lumber Inc. HF 'Hermp Phelp:  BigHom WD | 40000
100106 17609.96 Dennis Gohlke 0K Development  JJ | Joe Jones Port Lavaca T 4200+
« | [»

|[Eu$t0mer code] <F13 Prnt Cugtomer Repart [By Customer Code]  <F2: INPUT SCREEN test

The data element name definition is displayed within a text editor that can be edited using the editor.
Attributes are shown in the first line of the file, and succeeding lines display directives that define Valid
Values, messages, pre- and post-processing directives and other definitions for the data element name.

= FS
Edit Format
1 CUST-CODE f N CUSA1 ¥ @ B 8 AN 1 +
...%pecial Prompt: =
UP[1] =

...... Fre Process:
COMMECT{1} REFORT OERCUST;
COMMECT{ 2} METHOD OEZSTST START;
CONMECT METHOD DEZSTSTA

..... Fost Process:
COMMECT METHOD DEZSTSTI

)

This definition contains directives organized into sections. The editor assists in creating headers for these
sections, and handles indentation.

87
Copyright © 2021 Thoroughbred Software International, Inc



If you wish to add a new section into a data element name definition, position the cursor at the point you
wish to insert the new section, then select Insert Section (F11). The resulting menu, shown here, is used
to select the type of section required.

- ¥alid Yalues

- Preset ¥alues
- Delete Yalues
- Security

- Special Prompt
- Pre Process

- Post Process

- Audits

- Help General

[T-R0--RE VRN - RE L, R R FL RN L R

While you are editing a data element name definition a number of useful functions are available. Select
Special Functions (F7) to display this menu.

B (Save Format
| |Display Format
Connects

| |CONNECT help
Edit Format
View Formats
Edit Document
Prompt edit
Source-1¥
Dictionary

Function Description

Save Format  |Saves the data element name definition as it currently is defined. This must
be used, rather than Close, to save your work.

Display Format |Displays the definition of the entire format within the editor. However, no
changes may be saved after this mode has been entered.

Connects Displays only the CONNECT statements in the data element name
definition, hiding other details.

Connect Help |Displays extensive help on the use of directives in data element names.

Edit Format Enters format edit. See the Format subsection in this section.

View Formats |Displays and enters the Format Header view.

Edit Document |Opens the named document in edit mode.

Prompt Edit Opens the special prompt file for the data element name in edit mode,
allowing the prompts to be maintained. See the example following this table.

Source-1V Enters Source-1V

Dictionary Enters the main OPENworkshop dictionary menu.

88
Copyright © 2021 Thoroughbred Software International, Inc



The following figure shows a sample view with the special prompt displayed for the Sales Representative

Code column:
=| » Customer File <
Cuist Custarmner Si Discat)| ¥
Code Cuzt Sales| Contact Cuztomer Mame Cd |Salez Rep Mam | Customer City | St S
100100 [ 15827 00( Tex Rogers Toot-v'our-Hom AF  Albert Fisher Part Lavaca | Tx | 30,00
100701 16253, 36| D avid k.elly Fix-M-Up HF Henry Phelps | Seadiift Te o 32.00 j
100102 [ 16628.04{ Sue Thompzon | Computer Inc. JJ o Joe Jones b4 adizon M 3400
100103 | 16951.04Robert Brock | Today's Company  |JS | Jack Sulephen |Brdgewater |MJ - 36.00
100104 [ 17222 36| Sarah Smith ACME Inc. AF  Albert Fisher Dayton MJ | 3B.00
100005 17442 00" alter Snider | Lumber Inc. HPF Henry Phelps Big Hom WD 40000
100106 [ 17609.96(Dennis Gohlke  |OK Development  [JJ  Joe Jones Part Lavaca Tx | 42.00] %
« | [*
|[S ales representative] <F1x Report (By Sales Rep] <F2: Displap sales rep view

The next figure shows the data element name definition for that column, which was displayed by

selecting Data Name Edit (F11).

.=.|

4]

UP[4] SPL7]
...... Pre Process:

Edit Format
12 SR-CODE 2 H H3B8B8O8HN 151
..... Yalid Values:
LODKUP(2) VIEW OEVSLRP;
THDEHTY;
LET 40EFCUST.SR-CODE=HOEFSLRP.SR-CODE;
:0IN=#0EFSLRP.SR-CODE; -
:IJIR=::NHITE MDE“; 3 [Save Format
I:::;EI;TERIHT ALL; | |Display Format
! Connects
Ll]I]HUI.’ SCREEN OESSLRP [ |COMNECT help
...Special Prompt: [ |Edit Format

| |View Formats
Edit Document

CONNECT (1) REPORT DERCUST,,,%; | |Prompt edit
CONNECT({2) VIEW DEVSLRP | |Source-lV
Dictionary

Defining Special Prompts

Two prompts are used in the previous example for the data element name. They are described as VP[4]
and SP[7]. The text of these prompts is defined in the file, which is accessed through Prompt Edit on the
Special Functions (F7) menu. This file, shown below, collects together all the special prompts defined
for all data element names within the parent format.

OEFCUST

=]
Edit

<F1»
SLRY
<F1>
<F1»
<F1x
<F2»
<F1»
<F1x

Format

Print Customer Report {By Customer Code) <F2» INFUT SCREEN test
VieWw zales inuoice header or inueice detail

Report {Ey Customer Name}

Report {Ey $ales Rep) <F2» Display sales rep uied

Repart {By State})

Test pre-process {display PPE[ALL]}

Report {Ey $ales Rep} <F2» View Sales Reps <F9» Display %ales Rep
Test post-proc SR-CODE change <F2F Test pre-proc {display PRSCALL] )

[+

89
Copyright © 2021 Thoroughbred Software International, Inc



VP[4] instructs OPENworkshop to use the 4th prompt when displaying the data element name in a view,
and SP[7] specifies that the 7th prompt is to be used when in edit mode of that data element name.

Link

A link is a Dictionary-IV interface to a data file and associated dictionary definitions. It may be used in
scripts, reports, queries, and database maintenance. It specifies default presentation classes (view and
screen) to use to display the data and allow it to be edited. The link also specifies any trigger method to be
used to ensure that referential integrity is maintained throughout the system when data referenced in the
link is updated.

To add or modify a link definition move to the Link Header view for the application.

> Link View < M= B
Link Format DataFile F [SortFile Link 1/0 View Screen
Hame Hame Description Hame T Hame (8} Trigger Hame Hame
LGCPLERR |4GCPLERR |Compile Error File 4GCPLERR |1

LGCPSEL |4GCPSEL  |4GL - Compile Select Fo|4GCPSEL |1

4GLP Printer LP LP 1

4GP1 Printer P1 P1 1

4GP2 Printer P2 P2 1

4GP3 Printer P3 P3 1

4GP4 Printer P4 PYy 1

4GPS Printer PS5 [ 1

4GP & Printer Pé 4] 1

4GP7 Printer P7 P7 1

L4GPE Printer P8 [ 1

RN 1+

Select Line Insert to add a new link. OPENworkshop creates a new record and waits for you to enter the
link name and description. To delete a link select Line Delete.

H IDOL IV - Link Maintenance M= ES
| ‘D'ﬁk' Thoroughbred Software Intemational, Inc 02/05/98
Link  Mame:
Link Desc:
Access  Codes Date:  Created: [
Password: [ Changed: [ I—
Terminal:
Operator:
File  Infarmation File  Maintenance
File  Type: j Screen:
MWmbr Fecs: [ View: [
Format...: — Audit.: -
Data Filee [ 140 Trigger: j_
Sot File [ File  Suffix
Tewt File [ Method: I—
Server D¢ l_
Server  Tatble Name:l

To modify a link definition, select Edit to display the screen for link maintenance.

Field

Attribute

Access Codes

Allows access controls to be set for the data file controlled by this link.
Access can be restricted to specific terminals or operator codes, and may
be password protected.

File Type

Type of file.

90
Copyright © 2021 Thoroughbred Software International, Inc



Field

Attribute

Nmbr Recs Number of records to create. When 0 is entered, an automatically
expanding file is created.

Format The format-name defines the data items referenced by the link

Data File The name of the file containing the subject data.

Sort File The name of the file containing the sort keys and index.

Text File The name of the file containing text fields, if required.

Screen The name of the default screen to use when F9 is pressed in a view. If no
default screen is specified, OPENworkshop creates and displays a
default screen whenever F9 is pressed in a view.

View The name of the default view to use when displaying data from the link.

Audit Enable or disable audits.

1/0 Trigger I/0 trigger methods are responsible for controlling referential integrity in

an OPENworkshop application. They are executed, when defined in a
link, whenever the data file referenced by the link is about to be updated.
Trigger methods ensure that any update is consistently applied across all
files that rely on data values in the link. For more information, see the
OPENworkshop Methods section of this manual..

File Suffix Method

A file suffix method generates a file suffix to be applied to file names to
ensure that files are handled unambiguously within the file system. For
more information, see the OPENworkshop Methods section of this
manual.

Encrypt Flag

Enable or Disable AES256 bit strong encryption on Auto-Expanding

Direct Files

For more information on link attributes, see the Dictionary-1V Developer Guide.

CONNECT Directives

The CONNECT directive can be used:

e Fromamenu

* From a data element name pre-process

» From a data element name post-process

*  From within any script method

The general form of the CONNECT directive is:

CONNECT [(Ffunction-key-number)] CLASS class-name [message]

91
Copyright © 2021 Thoroughbred Software International, Inc




Example

CONNECT(2) METHOD OEZSTST START

This example connects to the OEZSTRT method when F2 is pressed. The START message string is
passed to the method.

Note: Where a graphical user interface is employed, the option is displayed in a pop-up menu when you
click the right mouse button, as well as being associated with the function key.

The following rules apply to CONNECT directives:

» The optional function-key-number is only valid when the CONNECT directive is called from a data
element name pre-process. It defines the function key that the user must press to cause the activation
of this CONNECT directive.

* The optional message is not valid for CONNECT HELP, CONNECT MENU, CONNECT SCREEN,
and CONNECT VIEW. It is only available for CONNECT METHOD, CONNECT REPORT, and
CONNECT QUERY.

»  Only methods have the ability to pass string arrays to connected classes. These arrays can be used to
control the behavior of the connected class. If it is important to exercise this level of control you
should first connect to a method, then use the method to set the required parameters in an array before
calling the required class.

Data Element Name Pre-process CONNECT Directives

The data element name pre-process CONNECT directives are evaluated when the cursor is placed in a
view or screen on the data element name, before the user has entered any data. Typically the pre-process
facility is used to allow the user to decide the next action. Screen prompts and view prompts, displayed on
the first line of the screen, provide the user with information on options.

In a data element name pre-process a CONNECT statement specifies the actions to be taken. If the
CONNECT statement includes a function-key-number, the directive is executed when that function key is
pressed. If no function key number is supplied, or if 0 is specified, the directive is executed automatically
when the view or screen field enters data entry mode.

The following CONNECT directives may be used in a data element name pre-process.
CONNECT[ (Function-key-number)] HELP help-name

Connects to the help subsystem, which will display the named help message. When the connected help is
closed control will be returned to this pre-process.

CONNECT[ (Function-key-number)] MENU menu-name

Connects to the menu subsystem and displays the named menu. When the connected menu is closed
control will be returned to this pre-process.

92
Copyright © 2021 Thoroughbred Software International, Inc



CONNECT[ (Function-key-number)] METHOD method-name
[message]

Passes control to the named method. When the method exits then control will be returned to this
pre-process. Methods may pass back method return directives, to be honored by the pre-process. See the
information on pre-process in the Data element names subsection earlier in this section.

CONNECT[ (function-key-number)] METHOD method-name
[PP=xx]

XX is a two-character value which will be received by the system data element name
#IDSV.PASSED-PARMS and by the Script system variable MENU-PARMS. This data element name
can be used to control the behavior of the method.

CONNECT[ (Function-key-number)] QUERY query-name
[ ,parameter[,parameter]...]

Passes control to Query-1V to execute the named query. When the query terminates, control will be
returned to this pre-process. Parameters may be supplied to Query-1V in a comma-separated string. For
more information on parameters, refer to information on the QUERY$ string array in the QUERY$
section of this manual.

CONNECT[ (Function-key-number)] REPORT report-name
[ ,parameter[,parameter]...]

Passes control to Report-1V to execute the named report. When the report terminates, control will be
returned to this pre-process. Parameters may be supplied to Report-1V in a comma-separated string. For
more information on parameters, refer to information on the REPORTS string array in the REPORT$
section of this manual.

CONNECT[ (function-key-number)] SCREEN screen-name

Connects to the named screen. When the connected screen is closed, control returns to this pre-process.

CONNECT[ (Function-key-number)] VIEW view-name

[USING data element name or expression; |

USING RANGE FROM data element name or expression; TO data element name or
expression;]

[SELECT WHEN expression;]

[SORT [BY] n]

Connects to the named view. When the connected view is closed control is returned to this pre-process.

The USING and USING RANGE clauses specify one or more data element name values or expressions
that, when evaluated, restrict the key range in the connected view to select records to be displayed.

The SELECT WHEN clause is used when the required selection criterion is to be based on non-key
field(s).

The optional SORT BY clause specifies which sort definition will be used in the connected view.

If an expression has embedded blanks then it must be terminated by a semicolon.

93

Copyright © 2021 Thoroughbred Software International, Inc



Script Method CONNECT Directives

The script method CONNECT directives are evaluated when invoked. Methods may pass parameters and
messages through the CONNECT directive using string arrays. For a description of the relevant array see
the section on String Arrays. The script method must dimension these arrays before they are used.

The following CONNECT directives can be used in a script method.

CONNECT HELP help-name

Connects to the help subsystem, which will display the named help message. When the connected help is
closed control will be returned to the original method.

The method may supply parameters and messages to control the behavior of the help subsystem by
building string array HELP$. See the HELP$ section of this manual.

CONNECT MENU menu-name

Connects to the menu subsystem and displays the named menu. When the menu is closed, control will be
returned.

The method may supply parameters and messages to control the behavior of the Menu subsystem by
building string array MENUS$. See the MENUS$ section of this manual.

CONNECT METHOD "method-name' ["'message’]

Passes control to the named method. When the method exits, control will be returned to the original
method.

The method may supply parameters and messages to control the behavior of the called method by
building the MSG1$ string array. OPENworkshop will place the optional message in MSG13$[1]. See the
information on application methods in the OPENworkshop Methods section of this manual.

CONNECT QUERY query-name[,parameter[,parameter]...]

Passes control to Query-1V to execute the named query. When the query terminates, control will be
returned. Parameters may be supplied to Query-1V in a comma-separated string. For more information on
parameters, see the information on the QUERY$ string array in the QUERY$ section of this manual.

Alternately, the method may supply parameters and messages to control the behavior of the Query-1V
subsystem by directly building the QUERY$ string array.

CONNECT REPORT report-name[,parameter[,parameter]...]

Passes control to Report-1V to execute the named report. When the report terminates, control will be
returned. Parameters may be supplied to Report-1V in a comma-separated string. For more information on
parameters, refer to the REPORTS string array section of this manual.

Alternately, the method may supply parameters and messages to control the behavior of the Report-1V
subsystem by directly building the REPORTS$ string array.

94
Copyright © 2021 Thoroughbred Software International, Inc



CONNECT SCREEN screen-name
Connects to the named screen. When the screen is closed, control returns to the method.

The method may supply parameters and messages to control the behavior of the called screen by building
the SCREENS string array. For more information on parameters, refer to the SCREENS$ string array
section of this manual.

CONNECT VIEW view-name
Connects to the named view. When the view is closed, control is returned to the method.

Optional USING, USING RANGE and SELECT WHEN clauses may be used to specify one or more data
element name values or expressions that, when evaluated, should be used as the key in the connected
view to select records to be displayed.

The optional SORT clause specifies the sort index that should be used when record selection is carried out
in the connected view.

Unlike a pre-process CONNECT, when these optional functions are invoked from a script method they
must be placed in a string within string array VIEWS$. For more information on parameters, see the
VIEWS string array section of this manual.

If an expression has embedded blanks then it must be terminated by a semicolon.

Other CONNECT Directives

The CONNECT directive may also be initiated from a data element name post-process or menu. In these
cases, the directive behaves as described for data element name pre-process CONNECT directives, except
that the function key number option is not available and the following exceptions apply:

CONNECT |From Data Element Name From Menu

Post-Process
HELP As data element name pre-process As data element hame pre-process
MENU As data element name pre-process As data element hame pre-process

METHOD  |Method return directives will not be  |Method return directives will not be
evaluated evaluated. If the menu is a selection
type menu then selection parameters
will be passed to the called method in
the MSG$[2] string array.

QUERY As data element name pre-process As data element name pre-process

REPORT As data element name pre-process As data element hame pre-process

SCREEN As data element name pre-process As data element hame pre-process

VIEW As data element name pre-process As data element name pre-process

95
Copyright © 2021 Thoroughbred Software International, Inc



Other Directives
This section describes further directives that are available to the OPENworkshop developer.
LOOKUP SCREEN

The LOOKUP SCREEN directive may be used within a data element name Valid Values field to specify
a screen definition to be used when the user selects Lookup Screen (F9) in a view or a screen. LOOKUP
SCREEN enables the default screen defined in the link to be overridden.

Typically, the called screen will be used to supply full details about an object that is displayed or
referenced by the data item displayed. The normal use of LOOKUP SCREEN when in a screen or a view
is to switch from a screen to a view or a view to a screen for a specific data record. LOOKUP SCREEN
allows the lookup to be extended to connect to any screen in the application.

From a view, the field must be in entry mode before the LOOKUP SCREEN will be honored.

The syntax for LOOKUP SCREEN is:

LOOKUP SCREEN screen-name
LOOKUP VIEW

LOOKUP VIEW may be specified within a data element name Valid Values field to assist in validation
of data input by the user. On completion of input in a data element name within a view or a screen where
LOOKUP VIEW has been specified, OPENworkshop will compare the received data with key values in
the specified view. If there is a match the field is accepted. If there is no match, then OPENworkshop
connects to the view, scrolling the rows to the nearest match. The user is then able to move to the desired
row and select OK (Enter) to select the record.

Note: The maximum length of the full lookup syntax is 256 bytes.

Syntax is:

LOOKUP[ (function-key-number)] VIEW view-name

[ERMFIRST;] [SPACEOK] [USING data element name or expression;]
[LET expression; or directive; ENDLET]

» If ERMFIRST is specified a brief error message:

The value entered is not contained in the lookup file

Displays before the connect to the view is made. Close (F4) returns to user input, allowing the field to
be re-entered. Any other response connects to the view.

» If the function key number is used, when in input mode the view will be displayed when the function
key is pressed.

» If SPACEOK is specified then blank entries will be accepted.

* The optional USING clause may be used to restrict the number of rows displayed in the connected
view.

96
Copyright © 2021 Thoroughbred Software International, Inc



» Avariable :OIN is provided, containing the value entered by the operator. This may be used to
construct the key. :OIN can also be assigned a value by the LET / ENDLET directive.

* Variable :DIR may be assigned method return directive value(s). These directives will be executed on
return from the lookup view.

Example
LOOKUP(2) VIEW OEVINVO USING #OEFPARM.DEPT + :OIN;
LET #OEFINVD.INV-LPRICE = #OEFINVH.ITEM-PRICE;

#OEFINVD. ITEM-CODE = #OEFINVH.1TEM-CODE;
:DIR="PRINT ROW"™; :OIN=#OEFINVH.ITEM-CODE; ENDLET

Method Return Directives

Method return directives provide a means for methods to communicate directives or status flags back to a
screen or view that invoked the method. Return directives are only evaluated by screens and views.

The method must place the directive(s) in string array MSG1$[0] before returning. If more than one
directive is to be returned they must be separated by semicolons.

»  Print the help specified by the help-code.
ERROR [help-code]
» Exit the screen or view. Does the same as a Close (F4).

EXIT

*  Move the cursor to the specified column number (for a view), field number (for a screen) or data
element name.

GOTO FIELD Field-number | Data Element Name
* Move to the row with the specified key value. Only meaningful to a view.
GOTO KEY Key-value | "Key-value'
»  Print the data record in the view or screen.
PRINT [ROW]
»  Write the current record to file.
WRITE
»  Specifies the normal completion of connected method.
- (period)
e Determine the number of rows to scroll up/down.

SCROLL UP | DOWN

97
Copyright © 2021 Thoroughbred Software International, Inc



Examples:

SCROLL DOWN 10
SCROLL UP 10

SCROLL DOWN 10; GOTO FIELD data-name

» This allows you to scroll to the right and left of a locked column, leaving the cursor on the current

column.

TAB | TAB BACK

Examples:

TAB 5
TAB BACK 5

o Signifies the method did not complete normally.

[Any other value]

Example:

IF MSG$[1]<>""

MSG$S[0]=""PRINT ROW;""+

"GOTO FIELD 5"
ELSE

FI;

MSG$[0]=""ERROR OEERMO1"

IT line number generated
Set return

directives.

else

Set error return.

endif

Thoroughbred Basic Method CONNECT Equivalents

Thoroughbred Basic methods may also invoke the equivalent of CONNECT directives. Behavior and
requirements are similar to those of script methods.

The CONNECT directive is not valid in Thoroughbred Basic, and the Thoroughbred Basic Environment
will not automatically create and dimension the string arrays used to communicate parameters and
messages. The Thoroughbred Basic method must dimension the required arrays and CALL a program as

follows:

CONNECT CALL ARRAYS
HELP 004, 001z HELP$
MENU 001, 001z MENU$
QUERY OO0R QUERY$
REPORT O0R REPORTS$
SCREEN 002A SCREEN$
VIEW 003A VIEW$

See on-line help for a description of the CALL lists for these calls.

98
Copyright © 2021 Thoroughbred Software International, Inc



OPENWORKSHOP METHODS

The ability to write methods, and to connect to methods from OPENwaorkshop classes, is the key to the
flexibility and productivity associated with working in OPENworkshop.

Methods may be written in the Script-1V or Thoroughbred Basic languages, but Script-1V should be used
whenever possible. The Script-1V environment automates many of the processes necessary for a reliable
and consistent application.

Methods may be initiated through a number of different routes. Methods can be connected from a menu,
screen, or view. Methods can be passed parameters and messages. These are made available to the
method in string arrays, described in the String Arrays section of this manual.. Methods written in
Script-1V will automatically have access to these arrays. Methods written in Thoroughbred Basic must
declare them.

Methods can connect to all OPENworkshop classes and to other methods.
Methods can return information to their caller. Most frequently this is accomplished using method return
directives, but in some cases information may also be returned through the string arrays. Methods may

also communicate information through global variables.

For information about method creation see the Creating Script Methods section later in this section.

99
Copyright © 2021 Thoroughbred Software International, Inc



REPORTS QUERIES

CUSTOMERS

CUSTOMERS

CONNECTS

CUSTOMERS
\

RS SALES A
\ INVOICES 4

N PRODUCTS
REPS

SALES A

INOICES ~_4
PRODUCTS

REPS

Types of Methods

OPENworkshop recognizes a number of different types of methods, each type being designed for a
specific purpose, and each being specified at different locations within Dictionary-1V.

100
Copyright © 2021 Thoroughbred Software International, Inc



WRITE MODR
WRITE NEWR
GO TO*
INDENTV
INSERT METHOD
CONNECT

CONNECT

SORT
MENU HELP
AFTER
¢ ~ viEw SCREEN READ
METHOD
'\X—Z/p SORTFILE
LINK
LINK / DATA FILE
TRIGGER
METHOD
FORMAT TEXT FILE
l \ DATA
| DESCRIPTIONS
PRE-PROCESS | DATANAME
DIRECTIVES
VALID LOOKUP SCREEN
VALUES LOOKUP VIEW
LET/ENDLET
DEFAULT
POST-PROCESS VALUES
DIRECTIVES
SCREEN PROMPT (SP)
SPECIAL VIEW PROMPT (VP)
PROMPT
POST-
PROCESS
METHOD
MENU QUERY REPORT

The diagram above indicates the types of methods available and the ways they can be initiated.

Data Element Name Pre-process Method

A data element name pre-process method is activated by a CONNECT METHOD directive defined in the
pre-process field of a data element name definition. It is invoked when a view or screen that contains the
data element name is preparing to allow the user to edit a data item defined by the data element name.

101

Copyright © 2021 Thoroughbred Software International, Inc



The method may take any action that is necessary for the application, but is usually used for one of the
following purposes:

» To perform an application function requested by the user pressing a function key. For example,
Process Invoice.

» To set up the environment prior to performing a connect to another class. For example, calculate a
key value before passing control on to a view.

On entry, a method that is invoked through a pre-process CONNECT METHOD directive will receive
four string arrays:

Pre-process creates array: PP$[ALL] SAS$[ALL] |FAS[ALL] |LNKS$[ALL]
Passed to script method as: MSGI1$[ALL] [MSG2$[ALL] IMSG3$[ALL] [MSG4$[ALL]

On exit, control will be returned to the calling screen or view. The method is able to return status
information and directives to the caller through method return directives. The method must place these
directives in MSG1$[0] prior to completion.

For more information refer to the Method Return Directives section in this manual. For information about
how and where to define methods see the Creating Script Methods section later in this section.

Example:

* This Script-1V method is invoked when a user wishes to add or change
* invoice data by using a screen for data input.

*

LN OELINVD

SN OESINVD

FN OEFINVD

MAINLINE
I Get the Global data for the invoice
FORMAT INCLUDE #OEFINVD, OPT="NONE"
LET OEFINVD = #OEFINVD I Copy to local format
(For an explanation of Global vs Local
Formats see the Local versus global
formats section later in this manual)

OPEN SCREEN OESINVD
PRINT SCREEN OESINVD

PRINT SCREEN OESINVD DATA I Output current data values
INPUT SCREEN OESINVD I Input the revised data values
LET #OEFINVD = OEFINVD I Copy new data to Global
LET MSG1$[0] = "PRINT ROW"™ I Re-print the row in the View
I on exit.
102

Copyright © 2021 Thoroughbred Software International, Inc



Data Element Name Post-process Method

A data element name post-process method is activated by a CONNECT METHOD directive defined in
the post-process field of a data element name definition. It is invoked when a view or screen that contains
the data element name has completed editing a data item defined by the data element name.

The method may take any action that is necessary for the application, but is usually used for one of the
following purposes:

» To perform an application function needed as a result of the completed data entry. For example, to
populate fields in the current row that depends on this input field.

» To set up the environment after the caller has accepted data, for example, to set global variables to new
values.

On entry, a method that is invoked through a post-process CONNECT METHOD directive will receive
four string arrays:

Post-process creates array: PP$[ALL] SAS$[ALL] |FAS[ALL] |LNKS$[ALL]
Passed to script method as: MSGI1$[ALL] [MSG2$[ALL] IMSG3$[ALL] [MSG4$[ALL]

On exit, control will be returned to the calling screen or view. The method is able to return status
information and directives to the caller through method return directives. The method must place these
directives in MSG1$[0] prior to completion.

For more information refer to the Method Return Directives section in this manual.

Example:

* This Script-1V method is invoked when the quantity of an inventory

item has been entered. The item discount, price, and tax are then
* calculated and reprinted in the view.

*

LN OELINVN
FN OEFINVD

103

Copyright © 2021 Thoroughbred Software International, Inc




MAINLINE

PRECISION 2

FORMAT INCLUDE #OEFINVN, OPT="'NONE" ! Inventory file.
LET OEFINVD = FMD('#OEFINVD'™), 1 Make local copy of
OEFINVN = #OEFINVN 1 Invoice details and

I Inventory details.
IF OEFINVD.ITEM-CODE <> OEFINVN.ITEM-CODE THEN
OPEN LINK OELINVN I Not the required
I inventory item.
LET OEFINVN.ITEM-CODE = OEFINVD.ITEM-CODE

READ OELINVN I Get the required
I inventory item.
LET FMD("'#OEFINVN')=0OEFINVN I Put it in the global.
ENDIF
LET Q = NUM(MSG1$[2D), I The new quantity

I from the operator.
P = (OEFINVN.ITEM-PRICE * OEFINVD. INV-DISC)/100,
OEFINVD. INV-QTY = Q,
OEFINVD. INV-LPRICE = OEFINVN.ITEM-PRICE - P,
OEFINVD. INV-LEXTEN = OEFINVD.INV-LPRICE * Q,
OEFINVD. INV-LTAX = OEFINVD.INV-LEXTEN * TAX-RATE,
MSG1$[0]=""PRINT ROW; GOTO FIELD 11" I Return directives.
LET FMD('#0EFINVD'™) = OEFINVD I Replace the global
with new values.

File Suffix Method

A file suffix method is used to obtain a correct file suffix for a link to open a data file. It is typically
required in applications that use a file suffix to differentiate between different parts of the application
data. For example, a file suffix is sometimes used to differentiate between different companies within a
single accounting application. For more information on file suffixes, see the Dictionary-1V Administrator
Guide.

The name of the file suffix method is specified in the link definition.

On entry the method will receive string array MSG1$[ALL], with MSG1$[1] containing the link-name to
be opened.

Link creates array: MSG1$[ALL]
Passed to script method as: MSG1$[ALL]

The method should place the file suffix in global object #IDSV.FILE-SUFFIX. MSG$[0] should be set to
an appropriate method return directive status flag.

For more information refer to the Method Return Directives section of this manual.

104
Copyright © 2021 Thoroughbred Software International, Inc



Example:

PROCEDURE
FORMAT INCLUDE #OEFCMPNY ,OPT=""NONE""
FORMAT INCLUDE #1DSV,OPT="NONE""
IF MSG1$[1] = "OELCUST ** THEN
LET #IDSV.FILE-SUFFIX = #OEFCMPNY .COMPANY-CODE
ENDIF
LET MSG1$[0] = "."

Insert Method

An insert method is activated when an operator performs a Line Insert in a view that has an insert
method specified. The insert method is specified by using an INSERT METHOD directive in the
pre-processing section of a data element name definition in a format. The data element name must be a
key field of the underlying format.

The insert method is responsible for checking that insertion of a new record is acceptable, and for
building any required default data not already specified in the data element name definitions contained in
the view.

On entry the method will receive four string arrays:

View creates array: PP$[ALL] SAS$[ALL] |FAS[ALL] |LNKS$[ALL]
Passed to script method as: MSGI1$[ALL] [MSG2$[ALL] IMSG3$[ALL] [MSG4$[ALL]

On exit control will be returned to the calling view. The method is able to return status information and
directives to the caller through method return directives. The method must place these directives in
MSG1$[0] prior to completion.

For more information refer to the Method Return Directives section of this manual.

OPENworkshop coordinates the actions of insert methods and view methods when both are defined for a
view. When a view is first displayed, and when rows are displayed in a view after scrolling operations,
any specified view method is invoked. When an operator selects Line Insert a fresh row is created in the
view and the view method is applied to that row. The insert method is then invoked and processed for the
new row.

105
Copyright © 2021 Thoroughbred Software International, Inc



* This Thoroughbred Basic Method is activated when an operator inserts
* a new line Into an invoice. It sets up default details and generates
* the new invoice line number.

METHOD MSGS$[ALL],SAS[ALL],FAS[ALL]
FN OEFCUST,OEFINVH,OEFINVD

PROCEDURE
IF CVT(#OEFINVH. INV-NUM,128)=""
MSG$[0]=""ERROR OEERMOO';
EXIT
FI;
#OEFINVD = #OEFINVH,

IT Invoice header is space
Set error return.

Get out.

endif

Set detail to common

DNs from header.

Set invoice line

item discount.

Get next line number from
sequence number generator
IT line number generated
Set return

directives.

#OEFINVD. INV-DISC =
#OEFCUST.CUST-DISC;
CALL "0071",MSGS[ALL],SAS[ALL],
FAS[ALL]:
IF MSG$[1]<>""
MSG$[0]="PRINT ROW;"+
"GOTO FIELD 5"

ELSE else
MSG$[0]=""ERROR OEERMO1" Set error return.

FI; endif

EXIT Get out.

Trigger Method

A trigger method is called whenever an UPDATE command is executed on a link where a trigger method
is defined. An update is executed whenever data in a view or a screen is changed, and also whenever an
UPDATE command is encountered in a script method. The existence of a trigger method is declared in
the link definition. For more information, see the UPDATE command section of this manual.

Trigger methods are a corner stone of the referential integrity facilities of an OPENworkshop application.
Trigger methods are responsible for ensuring that all relevant files are consistently maintained according
to application rules.

All links can have a trigger method if required. If a trigger method updates data in a link other than the
one for which it is defined, the trigger method for that link will also be executed. This powerful
mechanism allows an update to occur in all related files.

NOTE: Trigger methods must be written in Script-1V.

On entry the method will receive two string arrays:

Link creates array: LNKS$[ALL] |KT$[ALL]
Passed to script method as: MSGI1$[ALL] |MSG23$[ALL]

On completion the method must issue a Return Directive in MSG1$[0].

106
Copyright © 2021 Thoroughbred Software International, Inc



Trigger Methods can allow or not allow file I/O requests based on the return directive.
For more information, see the Method Return Directives section in this manual.

Example:

This method performs the update rules for the Invoice Header file.
Part of the requirement is to modify data in the invoice detail, and
this method simply does an UPDATE, causing a trigger for the invoice
detail file to be executed.

LN OELINVD 1 Define invoice detail link.
FN OEFINVH Define invoice header frmt.

INVHUPDATE
FORMAT INCLUDE #OEGF, OPT="NONE"™ ! Include global
flags definition.
Validate 1/0 function
Set new: iInvoice header rec.

INCLUDE OE.OEIFCK
LET OEFINVH=MSG2$[0],

CC$=0OEFINVH.CUST-CODE, 1 customer code.
SR$=0EFINVH.SR-CODE, ! sales rep code.
OEFINVH=FMD(""#0EFINVH""), 1 Set old: invoice header rec.
FUNC$=MSG1$[0] I 1/0 function.
IF CC$ <> OEFINVH.CUST-CODE OR I If invoice customer code or
SR$ <> OEFINVH.SR-CODE OR I sales rep changed or
FUNC$=""D"" THEN I invoice header delete

IF FUNC$="D'"" THEN
LET #OEGF. INVHC=""X"
ENDIF
OPEN LINK OELINVD
UPDATE OELINVD FUNC$
USING KEY RANGE
FROM OEFINVH. INV-NUM
TO OEFINVH. INV-NUM
PROCESSING 1S INVDUPDATE

IT header being deleted

Set invoice hdr delete flag.
endif

Open invoice detail link.
Update all detail records for
the invoice.

(The trigger method for the
details in OELINVD runs

for each record updated)

LET #OEGF. INVHC="""
ENDIF
LET MSG1$[0]="."

Clear invoice hdr delete flag.
endif
Set ok return status.

INVDUPDATE

Processing For Invoice Detail
Update.

Update: customer code.

sales rep code.

LET OEFINVD.CUST-CODE = CCS$,
OEFINVD.SR-CODE = SR$

View Method

A view method is invoked when a view is preparing a row for display, having read the row data from a
file. Views may contain data from multiple links and formats, and may also contain calculated columns.
The view method is responsible for ensuring that all column values are available for display by the view
or for preventing a row from being displayed.

107
Copyright © 2021 Thoroughbred Software International, Inc



On entry the method will receive three string arrays.

View creates array: VS$[ALL] VMS$[ALL] [LNKS$[ALL]
Passed to script method as: MSG1$[ALL] [MSG2$[ALL] [MSG3$[ALL]

OPENworkshop executes the view method once for each row displayed in the view.

The VM$ array is provided as a working storage area for use by the developer, and may contain any data
required by the method. The first time the view method is executed when preparing a view for display the
VMS$[ALL] array will not be dimensioned. If the array is to be used, the method must dimension the array
and place values in it. OPENworkshop will retain the array when the method exits, and then returned to it
on subsequent view method calls. When the calling view is closed by the operator the VMS$ array is
deleted from memory.

To avoid conflicts the View Method should maintain a unique channel list for reads performed by the
method. Because the View Method can be invoked by any number of Scripts or Methods and at various
levels of recursion, the channel context can vary.

On exit from the view method, control will be returned to the calling view. The method is able to return
status information and directives to the caller through method return directives. The method must place

these directives in MSG1$[0] prior to completion. Setting LNK$[0] to any value other than "." before
exiting will suppress the display of the row.

Trigger methods can allow or disallow file I/O requests based on the Return Directive.
For more information refer to the Method Return Directives section in this manual.

Example:

I This method prepares the Customer File view, an example of which

I is shown below. In this view, the Sales Rep Name column is looked

1 up from the Sales Rep file by the view method. Because this is the
I First column that was added to the view it is referred to as column
I A_. This is an example of a Thoroughbred Basic method.

METHOD V$[ALL], VM$S[ALL], LNKS[ALL]
FN OEFCUST, OEFSLRP

108
Copyright © 2021 Thoroughbred Software International, Inc




PROCEDURE

VO$ = V$[0,0],

EL = ASC(VO$(1,1)),

NC$ = VOS(EL);

IF NEAC'WN$'™,1)=0
DIM VNM$(1);
CH=UNT;

OPEN (CH) "OESLRP"
VM$[1]=STR(CH)

ELSE

CH=NUM(VMS$[1])

FI;
SAV$ = #OEFSLRP,

Get view info entry.
Set view attribute entry size.
Get new column definition string.
IT the View Method array not built
Dim array.
Get next available channel
Open sales rep file
Save channel for next call
Else
Get sales rep channel previously
opened by this method
endif
Save contents of current sales rep
record. This is necessary if the
contents of the sales rep record are
being returned to a class that may
change the contents of the sales rep
file based on current contents of
sales rep data record.

SR$=CVT (#OEFCUST .SR-CODE, 128), 1 Set customer sales rep code.

I1=POS("'A""=NC$,2);

1F 1
I=ASC(NC$(1+1,1));
GOSUB GETSLSRP

FI;

EXIT

GETSLSRP
V$[0, 1]1=V$[0,17(1,EL);

IF STL(SR$)

CLEAR ERC;

READ (CH,

KEY=#OEFCUST . SR-CODE,,
ERC=1) #OEFSLRP;

IF ERC=0

V$[0, 17=V$[0, 11(L,EL)+
#OEFSLRP . SR-NAME

Find new column id "A".
I found

Set column number.

Go get sales rep name.
endif

Get out.

Get Sales Rep Name For
Customer View.
Chop last sales rep name
from column entry.
IT cus sales rep code not null
Clear error code and
Read sales rep
file using customer
sales rep code.

I If no error
Append sales rep name to
column attribute string.

FI; I endif
#OEFSLRP=SAV$ I Restore sales rep data rcrd.
FI; I endif
RETURN 1 Return.
109

Copyright © 2021 Thoroughbred Software International, Inc




= » Customer File <

Cust Customer i Dizcnt||
Code Cuzt Sales| Cantact Customer Name Cd |Salez Rep Mam | Custarmer City | St Z[|
100100  15827.00| Tex Rogers Toot-vour-Haorm AF Albert Fisher Port Lavaca  Te 30000
100101 16253 36| David F.elly Fis-bd-Lip HF 'Hermp Phelp: | Seadiift Tw | 3200 j
100102 |  16628.04Sue Thompson | Computer Ihc. JJ o Joe Jones tadizon MJ o 34.00
100103 [ 16951.04{Fobert Brock | Today's Company [JS  Jack Sulephen  Brdgewater MJ | 36.00
100104 | 17222 36| Sarah Smith ACME Inc. AF Albert Fisker Drayton M| 3800
100105 [ 17442000 alter Snider | Lumber |hc. HF 'Henm Phelp:  BigHom WD | 40000
100106 |  17609.96|Dennis Gohlke |0OK Development  |J)  Joe Jones Port Lavaca  Tw | 42.00]#*
« | [+

|[S ales representative] <F1> Report By Salez Rep] <F2» Digplay zales rep view

After Read Method

An after read method is initiated by a screen when a record has been read and before it is displayed for
editing.

The method may take any action that is necessary for the application but is usually used for one of the
following purposes:

* Toensure that all relevant data is available and calculated prior to the screen displaying the data.
» To deal with potential error conditions, such as RECORD BUSY, when the read returns.

On entry the method will receive four string arrays:

ARMS[ALL]
MSG1$[ALL]

SAS[ALL]
MSG2$[ALL]

FAS[ALL]
MSG3$[ALL]

LNKS$[ALL]
MSG4$[ALL]

Screen creates array:

Passed to script method as:

On exit control will be returned to the calling screen. The method is able to return status information and
directives to the caller through method return directives. The method must place these directives in
MSG1$[0] prior to completion.

For more information refer to the Method Return Directives section in this manual.

In addition to the standard return directives, the following directives are also available:

""" Continue processing record.

""" Continue processing record.

SKIP Reject record, print record not found message.

SKIP-NOMSG Reject record, do not print the message.

OPENworkshop automatically adds ;SKIP-NOMSG to any ERROR or EXIT return directives used.

110
Copyright © 2021 Thoroughbred Software International, Inc



The WRITE directive is not allowed in inquiry or logical screen entry modes. In processing a WRITE
return directive the calling screen automatically re-EXTRACTS the record unless the SKIP or
SKIP-NOMSG commands are used.

Example:

This Thoroughbred Basic method is associated with a screen that
displays customer information. Part of the information is derived
from the Sales Rep File. The after read method positions on screen
to the correct place in the Sales Rep name file.

*ox ok X

The Customer Masterfile screen contains a formula that prints the
Sales Rep"s name. This method reads the sales rep record into the
format #OEFSLRP. If the sales rep is not found, a return directive
is used to move the cursor to the sales rep code field if the mode
allows record edits.

X F X %

METHOD MSGI$[ALL], MSG2$S[ALL], MSG3$[ALL], MSGAS[ALL]
FN OEFCUST, OEFSLRP

PROCEDURE
MSG1$[0o]=".",
MD$=MSG1$[2](1,1),
KF=NUM(MSG1$[2](5,1));
IF KF AND POS(MD$="ACDI'")

GOSUB GETSREP

FI;
JFMTS=""";

Default return value to ok.

Get maintenance mode.

Get key found flag.

IT key found & add/chg/del/ing mode
Process sales rep code.

endif

Don"t delete formats included by
the FN directive

Cleanup and exit.

GOTO CUEXIT

GETSREP 1 READ SALESREP RECORD.
CH=UNT; 1 Get available channel number.
OPEN (CH) "OESLRP'; I Open code file.
CLEAR ERC; 1 Clear error control.
SET ERC O;

READ (CH,KEY=#OEFCUST.SR-CODE, I Read
ERC=1) #OEFSLRP; sales rep file.

IF ERC I If error reading sales rep
IF ERR=11 I 1T not found
#OEFSLRP .SR-NAME=""*Not found*"; I Set text.
IF POS(MD$=""AC™) I 1T add or change modes
PRINT "RB",; I Ring bell.
MSG1$[0]=""GOTO FIELD SR-CODE"™ I Start at sales rep field.
Fl I endif
ELSE I else
IF ERR=0 I If record busy
#OEFSLRP . SR-NAME=""*Busy*"" I Set text.
ELSE I else
MSG1$[0]="ERROR OESLERR" I Process unexpected error.
Fl I endif
Fl I endif
FI; I endif
RETURN I done

111

Copyright © 2021 Thoroughbred Software International, Inc



Application Method

An application method, called through a CONNECT METHOD directive via a menu or a script,
implements any general application logic required by the developer.

On entry the method will receive string array MSG1$[ALL], where:

MSG1$[0] Defined by developer
MSG1$[1] "Message"
MSG1$[2..n] Defined by developer

Example:
Set Terminal Date  |--------- CONNECT METHOD OOUTIMET
Set System Date  |--------- CONNECT METHOD OOUTIMES

* This application method is invoked when connected from a menu or
* application program. MSG1$[1] will contain either a "T" or "S"
* depending on which value is passed from the CONNECT directive.

METHOD MSG1$[ALL]

PROCEDURE
IF MSG1$[1]="T"
"Set Terminal Date"™ logic
ELSE
IF MSG1$[1]=""S"
"'Set System Date' logic
Fl

Fl

Creating Script Methods

New Script-1V Facilities

The Script-1V language features and facilities are largely based on the Script-IV language, but some
differences do apply. For the convenience of developers who have Script-1V experience, these differences
are outlined below. The Associated Systems section of this manual provides a full guide to migrating
existing Dictionary-1V applications to OPENworkshop. For more information, see the Script-1V
Language Reference.

»  OPENworkshop introduces a new UPDATE directive to the Script-1V language. UPDATE operates
essentially as a CHANGE directive, except that it causes a trigger method associated with the link to
be executed. For more information, see the UPDATE command section later in this manual.

»  OPENworkshop no longer supports Type 1 or Pre/Post Processing scripts. However, any existing
scripts of these types can very easily be changed to methods.

112
Copyright © 2021 Thoroughbred Software International, Inc



»  While continuation scripts, overlays and public scripts may still be used, the way that
OPENworkshop encourages code to be developed in small, independent methods makes them
unlikely to be needed. The data environment and behavior on termination of continuation scripts and
overlays is different from that of the Dictionary-I1V environment. For more information, see the Script
execution environment section later in this manual.

»  OPENworkshop introduces local and global formats. For more information, see the local versus
global formats section later in this manual.

» A comprehensive debugging environment.

*  Full cross-referencing between all classes, methods and where they are used.

Source-IV

Thoroughbred Source-1V is a source code development and control system. In addition to library
management and a context sensitive editor, Source-1V offers version control and the ability to recover any
previous version of your source. This manual assumes that you will be using Source-1V for your
development. For more information, see the Source-I1V Reference Manual.

Once created, scripts must be compiled before they can be run.

How to structure a script method
Scripts are divided into two sections, the Data Environment section and the Procedures section.

The Data Environment section is located at the beginning of the script method before any procedures
and is optional. It is used to declare the dictionary definitions such as format, screen, view, and link to be
used by the script. The section is only necessary if Dictionary-I1V definitions are going to be used by the
script.

The Procedures section consists of one or more independent procedures containing Script-1V commands.

Readability

Readability can affect long-term maintenance costs and affect the overall profitability of a software
product. Script-1V is a self-documenting language designed for readability and easy maintenance. The
commands and clauses are written in a simple, descriptive language and parameters are always identified
by specific phrases. In addition, comments or remarks may also be included in a script to enhance the
readability. This section describes several ways to enhance the overall readability of a script.

However, some software developers prefer a terse, less wordy language and are willing to sacrifice some
readability in exchange for shorter commands. The Script-1V language is flexible enough to allow for this
preference without detracting from the overall understanding of the commands. This is accomplished, in
part, by optional syntax elements that do not affect the command function and are available only as
readability aids.

113
Copyright © 2021 Thoroughbred Software International, Inc



Given the choice between readability and terseness, it is very important that you select your style and be
consistent in the use of the various readability options. Some thought should also be given to the design
and organization of procedures in your scripts. The increase in productivity offered by Script-1V can be
enhanced by spending additional time in the analysis and design phase of product development. This will
not only benefit development during the implementation but will contribute to the readability and
long-term maintenance of your scripts.

Comments
Comment or remark lines can be included in a script and are not compiled. Any line that contains an *

(asterisk) in column 1 is treated as a comment line. You can use comment lines as dividers to separate or
set off a group of procedures or other segments within a script. For example:

Optional Syntax

This refers to optional syntax elements that do not affect the command function and are purely available
as readability aids. Three common ones are: IS, ARE, and PROCESS. For example, the following two
clauses perform the same function:

MISSING KEY PROCESS 1S
TOTALS-PROCEDURE

MISSING KEY TOTALS-PROCEDURE

Exception: Readability options, such as IS or ARE, must be used to separate two expressions in a script.
For example, the first line below causes a compile error, while the second does not:

READ LMINDD USING KEY SORT 1 "5

READ LMINDD USING KEY SORT 1 1S "5"

Optional Punctuation

The ; (semicolon) and . (period) can both be used to enhance command readability by marking the end of
a command. The script compiler ignores these two punctuation marks.

The period can be used to show the end of a command in the same way it shows the end of a sentence.
This helps to identify the beginning and end of commands, especially when a command is indented or
broken up on several lines.

CHANGE APCKREG USING KEY CHK-NO
MISSING KEY PROCESS 1S ADD-CHECK
PROCESSING IS WRITE-CHECK.

PRINT SCREEN APCHECKS. INPUT SCREEN

APCHECKS.

114
Copyright © 2021 Thoroughbred Software International, Inc



The semicolon can be used to separate commands that appear together on a single line, or to separate
clauses within a command.

OPEN SCREEN POSCN1; OPEN SCREEN
POSCN2; OPEN SCREEN POSCN3; ADD
CUSFIL USING KEY CUS-CODE; DUPLICATE
KEY 1S CHANGE-CUS; ERROR 1S
ERROR-LOG.

Again, the important thing is to be consistent in your usage.
Optional Line Spacing

Blank lines can be used to separate logical segments of your script. You may want to separate procedures
or groups of procedures from each other, or even separate individual commands. Blank lines are not
compiled, and since scripts are compressed before being stored on disk, blank lines do not require storage
space.

Optional Indention

Although commands and their clauses can be strung together one after the other without placing the
beginning of each command on a new line, this would make a very tight and hard-to-follow script. It is a
good idea to indent commands to highlight clauses and reflect any hierarchy in processing. If you develop
and follow your own standards for indenting, it can greatly strengthen the structure of your scripts and aid
readability.

We recommend that you start the beginning of each command on a new line. You may also want to use
standard indention for commands such as the following:

CHANGE CUSFIL USING KEY CUS-NUMBER
BUSY PROCESS 1S BUSY-MESSAGE
END PROCESS 1S END-OF-FILE

PROCESSING IS UPDATE-CUS
TEXT "A"
WINDOW LINE IS 15
COLUMN 1S O
CHARACTERS PER-LINE ARE 60
NUMBER LINES ARE 6

IF CUS-NUMBER > "'TOO0O"™ THEN
PRINT SCREEN CUSSCRN1 CLEAR
DO LOCAL-CUSTOMERS

ELSE
DO COUNT-MAIL-ORDER-CUSTOMERS
IF COUNT1 > 1000 THEN

PRINT MESSAGE ''N,150"
IF MAIL-ORDER-FLAG = "y THEN
DO BULK-MAIL
ENDIF
ENDIF
DO CLOSE-MAIL-ORDERS
ENDIF

You can also use a combination of indention and punctuation.

115
Copyright © 2021 Thoroughbred Software International, Inc




The following example demonstrates lack of structure and poor readability:

IF SORT-NO = O THEN

CHANGE ATAPMSTR USING KEY NEXT

PROCESSING IS EDIT-RECORD;BUSY IS BUSY-RECORD;END IS
END-OF-MAIN-FILE

ELSE CHANGE ATAPMSTR USING KEY SORT SORT-NO NEXT
PROCESSING IS EDIT-RECORD;BUSY IS BUSY-RECORD;

END 1S END-OF-MAIN-FILE

ENDIF

The following example uses the same command and demonstrates how structuring a script can improve
readability:

IF SORT-NO = O THEN
CHANGE ATAPMSTR USING KEY NEXT
PROCESSING IS EDIT-RECORD
BUSY IS BUSY-RECORD
END IS END-OF-MAIN-FILE
ELSE
CHANGE ATAPMSTR USING KEY SORT SORT-NO NEXT
PROCESSING IS EDIT-RECORD
BUSY IS BUSY-RECORD
END IS END-OF-MAIN-FILE
ENDIF

Data Resources in Script-IV Methods

Script-1V methods have a wealth of data resources to satisfy all the needs of developers. In addition to the
Dictionary-IV resources, local 4GL data element names and 3GL variables can also be utilized.

Compile-time Definitions

Compile-time definitions contain data that needs to be resolved when the script is compiled.
Compile-time definitions include all definition names specified in data declarations. The data declarations
include all formats, screens, views, links, and local data element names. These definitions must be
declared before they can be used in a script.

Each data declaration consists of a command followed by a definition name. The command must begin in
the left-most column of the line and the definition name must be indented at least one tab stop on the
same line. More than one declaration is allowed per line if the definition names are separated by commas
or spaces. For more information on the different data declaration commands, see the Script-1V Language
section of this manual.

Example:

FN LCFORMAT, LMCUSFL
SN LMSCUSFL

116
Copyright © 2021 Thoroughbred Software International, Inc



Definition Data Declaration Command
Data Name DN
Format Name FN
Link Alias LA
Link Name LN
Screen Name SN
View Name VN

A script name is a compile-time definition when used in the INCLUDE command:

Definition Command
Script Name DN
Format FORMAT INCLUDE

When used in script commands, these compile-time names must not be delimited by quotes. They cannot
be parameterized or passed to a command in a data element name or variable. They must be hard-coded in
your script, for example:

OPEN SCREEN LMSCUSFL

For more information on data declaration commands, see the descriptions of the DN, FN, LA, LN, SN,
and VN commands in the Script-IV Language Reference.

Run-time Definitions

Run-time definitions contain only data resolved at execution time. Run-time definitions include all
program, on-line help, and message dictionary definitions, and all script names, except when used in the
INCLUDE command:

Definition Command

Message Dictionary |All Applicable

On-Line Help All Applicable
Program Name All Applicable
Script Name All except INCLUDE

These definition names are used in script commands without being declared and can be used in string
constants, variables, data element names, or expressions. They can be soft-coded in your script; for
example, OPEN MESSAGES "ARMSGS" or OPEN MESSAGES MESSAGE-LIST.

117
Copyright © 2021 Thoroughbred Software International, Inc



Data Element Names in Script-IV

Data element names must be declared before they are referenced. Data element names can be used in
expressions, functions, assignments, and calculations. In general, a data element name is limited to a
length of 20 characters. Valid characters are uppercase and lowercase alphabetic characters, numerals,
and the hyphen character. Data element names must not contain a period or any special characters that
may cause a conflict within the Script-1V syntax, operating system, or third generation language. Data
element names must not conflict with any procedure names, declared format, link, screen, or view names,
or keywords. If a data element name has the same name as a Thoroughbred Basic variable, the data
element name takes precedence.

Data element names can be defined to hold string, integer, or decimal data. Additional attributes can be
specified. Data names only hold a single type of data defined in the dictionary or script. For example, if
CUS-NAME is defined, it is handled as a single element. If it needs to be handled as a first and last name,
you must define it as two parts, for example: CUS-NAME-FIRST and CUS-NAME-LAST.

Types of Data Element Names

The three types of data element names that can be used in Script-1V are format data element names, link
alias data element names, and local data element names.

* Format data element names

Data element names that are defined in a format can be used in a script if the format has been
declared using an FN command. These format data element names are dictionary-based because the
format definition resides in Dictionary-IV.

Format data element names can have additional capabilities over local data element names. You can
specify many different data types such as string, integer, decimal, date, phone number, social security
number, yes/no, or text field, as well as specifying automatic controls on the entry and editing of the
data such as prompts, help, valid entries, default values, etc.

When used in a script, these data element names can, and in some cases must, be qualified by the
format name. The name of the format must precede the data name limited by a period, for example,
ARFORMAT.CUS-NUMBER. This is necessary if your script uses data element names that match in
multiple formats.

For more information on format data element names, see the description of the FN command in the
Script-1V Language Reference.

e Link alias data element names

For each link alias declared in the script, a duplicate format with an additional set of matching data
element names is available to the script. To be accessed, these data element names must be qualified
by the link-name-alias rather than the format name. For more information on link alias data element
names, see the description of the LA command in the Script-1V Language Reference.

118
Copyright © 2021 Thoroughbred Software International, Inc



Local data element names

Data element names can be defined in a script using the DN data declaration command. These local
data element names do not reside in the dictionary but are handled much like a format data element
name. They are not qualified by a format name or other name, and therefore must be unique among
any other local data element names or data element names used in a format. For more information on
the DN data declaration command, see the description of the DN command in the Script-1V Language
Reference.

Logical versus Physical Formats
A format is used to describe a structure of data within a data record, usually via a link.

In scripts, a format can be used independently of a data file or link. In this usage, it is referred to as a
logical format and can function like a data element name or a variable. It can be assigned a value, its
value can be printed or passed to another script, and it can generally be manipulated as an item of data in
several commands. Logical formats are a powerful feature of Script-1V.

For example, INPUT SCREEN enables an operator to enter data into a format or part of a format, CALL
can pass a format to a script. LET can assign values or other format names to a format string. For more
information on how formats operate in these commands, see the Script-1V Language Reference.

The ability to manipulate a logical format provides greater freedom in script design. The following two
examples each describe a different way to INPUT two data records and write them to two files.

The first example uses two independent screens and two physical formats. The second example
accomplishes the same task using one screen with one logical format and two physical formats.

119
Copyright © 2021 Thoroughbred Software International, Inc



Formats for Examples 1 and 2:

Format ONE Format TWO Format ABC
CUS-CODE SLS CODE CUS-CODE
CUS-NMAE SLS-NAME CUS-NAME
CUS-ADDRESS CUS-ADDRESS
SLS-CODE SLS-CODE

SLS-CODE
Example 1:

PRINT SCREEN ONE
INPUT SCREEN ONE
ADD LINK-ONE
PRINT SCREEN TwO
INPUT SCREEN TWO
ADD LINK-TWO

Screen ONE is printed then used to input data into format ONE. The data in format ONE is added to the
data file using LINK-ONE. The same procedure is performed for screen TWO, format TWO, and
LINK-TWO. In this example, the two screens are displayed and manipulated independently of each other.

Example 2:

PRINT SCREEN ABC
INPUT SCREEN ABC
LET ONE = ABC
ADD LINK-ONE
LET TWO = ABC
ADD LINK-TWO

Screen ABC is printed then used to input data into format ABC. Format ABC contains data element
names from two different physical formats: ONE and TWO. Format ONE is loaded with data in a format
assignment statement, and the data in format ONE is added to the data file using LINK-ONE. Format
TWO is loaded with data in a format assignment statement, and the data in format TWO is added to the
data file using LINK-TWO. In this example, a single screen is used to collect data.

Example 1 illustrates a multiple screen design. Example 2 illustrates single screen design using a logical
format.

Local versus Global Formats

OPENworkshop allows the developer to create global or local working copies of a Dictionary-1V format.
A global instance of a format is created in memory when it is invoked, and remains in memory until the
class or method that invoked it terminates (or deletes it). A global instance of a format is available to all
other classes and methods within the OPENworkshop environment.

By contrast a local instance of a format, while it remains in memory until the method that invoked it
terminates (or deletes it), is not available to any other classes or methods.

120
Copyright © 2021 Thoroughbred Software International, Inc



To specify that you wish to create or reference a global instance of a format, precede the format hame
with a # (pound sign). For example, contrast:

LET #OEFINVD.INV-DISC = DISCOUNT
LET OEFINVD.INV-DISC = DISCOUNT

The first example assigns a value to a global instance of format OEFINVD, while the second assigns the
value to a local instance.

The Importance of Global Formats in OPENworkshop

The ease with which developers can connect between classes and methods while maintaining the context
of current data records is largely due to the existence of global formats. All OPENworkshop views and
screens create a global instance of the format on which they are based.

Because the instance of the format is global, any methods that are invoked using the CONNECT directive
(either directly from the view or screen or via any chain of other views, screens and menus) are available
to those methods. In this way, methods are able to derive the current data context with ease simply by
reading the current contents of the #FORMAT.

Handling of Global Formats

Possible CONNECTSs to
FURTHER CLASSES and METHODS

[ [ [
» » »

CLASS OR
METHOD

Backup
Re-Entrant
Environment

Restore
Re-Entrant
Environment

> ¥ >

connect
All OPENworkshop views and screens must be based on a format. The format name is specified in the
definition of the view or screen in Dictionary-1V. Views and screens may, additionally, refer to other
formats through joins specified in their definition. On entry to a view or a screen

OPENworkshop creates a global instance of the format on which it is based, and any joined formats
(having first made a backup copy if formats were included prior to entry).

When a CONNECT directive is executed, the global format is populated with the contents of the record
currently active, i.e., the row at the cursor position in the case of a view.

121
Copyright © 2021 Thoroughbred Software International, Inc



This instance of the global format is available to all other classes or methods invoked from this time until
either it is replaced by another instance of the global (this happens, for example, when view OEVCUST is
invoked while another instance of the same view is open) or the view or screen that created this instance
terminates. When a view or screen terminates, the instance of the global format that it created is deleted
and the backup copy that it created is restored.

This behavior enables you to create re-entrant applications.
The Control structure section later in this manual discusses how OPENworkshop manages classes and

methods through a structure of levels; each CONNECT, explicit or implicit, causes OPENworkshop to
move to the next higher level.

Scope of Global Variables

LEVEL 4 VIEW
METHOD A CUSTOMERS
N
VIEW VIEW
LEVEL 3 CUSTOMERS PRODUCTS MENU
v IV M
VIEW
LEVEL 2 METHOD A INVENTORY
|V [—
VIEW
LEVEL 1 CUSTOMERS

The diagram above depicts how any instance of a global format is available to all higher level classes or
methods.

How to Use Global Formats in a Script Method

If you wish to access the contents of an existing global format from within a script method, you must first
declare the structure of the format, using the statement:

FORMAT INCLUDE #format-name OPT=""NONE"

This statement, placed in the Procedure Section of the method, loads the attribute table of the format into
memory for the run-time environment to use.

122
Copyright © 2021 Thoroughbred Software International, Inc



If you wish to modify the contents of a global format you must first make a backup copy of its current
contents, and must restore the pre-existing copy of the global format before you exit. This discipline
ensures that the re-entrance capability of your application is preserved.

If you wish to create an instance of a global format for other classes or methods to access, and have that
global format persist after your method has terminated, create it using FORMAT INCLUDE, and set
global variable JFMT$ to null before the method terminates. This step prevents OPENworkshop from
deleting the global formats included in your method when it terminates. See the information on
environment tables in the Variables section later in this manual.

A Warning About Assignments with Global Formats

An assignment of one format to another, such as

LET OEFCUST1 = OEFINV

Normally compares the two formats and moves the contents of all data element names that are present in
both formats from the format in the right hand side to the format in the left hand side of the statement.
This is not true for any assignment that has a global format on one side and a local format on the other
side. In such cases, OPENworkshop assumes that both formats are compatible and simply moves the data,
i.e., simply moves the string.

Example:

LET #OEFCUST1 = OEFCUST

Moves the data from the local format to the global format. An assignment between two dissimilar
formats, such as:

LET #OEFCUST1 = OEFINV

is likely to lead to unexpected and undesirable results.

I/0 and Formats

Script methods perform I/O using directives such as READ, ADD and CHANGE. These always use a
link to determine the file to be used, and the memory-resident format definition to be used.

OPENworkshop script methods always use a local format for these 1/0 functions. It is not possible, for
example, to read to a global instance of a format. Instead, you must read to the local format, and then
assign the data to the global.

Constants

Constants are data elements that do not change value during script execution. Constants are also called
literals because values such as 1.25 or "string" are literal values. There are two types of constants:

* Numeric constants can be positive or negative numerals in integer, fixed point, or floating-point
format.

123
Copyright © 2021 Thoroughbred Software International, Inc



» String constants include ASCII characters delimited by quotes, such as "ABC", or hexadecimal values
delimited by dollar signs, such as $414243$.

For more information on constant values, see the Thoroughbred Basic Reference Manual.

Variables

Variables are data elements that contain values. The value contained in a variable can change during
execution. Script-1V recognizes numeric, string, and system variables. You can create numeric and string
variables. System variables are numeric or string variables that Script-1V defines for you.

Data Element Names versus Variables

Because data element names are treated as single elements in scripts, substring operations cannot be
performed on data element names. However, the value in a data element name can be moved to a variable
on which string operations can be performed. Data element names and variable names can be used
interchangeably in Script-1V syntax, except when specifically stated otherwise.

Variables are not dictionary-based. They provide an alternative way of holding and manipulating data and
do not have the requirements that are built into data element name definitions. However, these very
characteristics can defeat a primary purpose of using the system dictionary for data definition: to obtain
data independence. Much productivity provided by fourth generation languages is tied to data
independence, and this can be lost if variables are not used wisely.

Numeric Variables

Numeric variables contain numeric values. These values can be integers, fixed-point numbers, or floating
point numbers. You can use the LET command to assign numeric values to the numeric variables you
define.

For more information on how to define numeric variables, see the Thoroughbred Basic Reference
Manual. To establish control of naming conventions for variables, see the descriptions of the .LONGVAR
and .SHORTVAR commands in the Script-1V Language Reference. To specify how integer values are
rounded, see the description of PRECISION in the Script-IV Language Reference.

Elastic String Variables

Elastic string variables contain string values. These values are any alphanumeric value; lengths of strings
can range from 0 to 65000 bytes long. You can use the LET command to assign string values to the
elastic string variables you define.

For more information on how to define string variables, see the Thoroughbred Basic Reference Manual.
To establish control of naming conventions for variables, see the descriptions of the .LONGVAR and
.SHORTVAR commands in the Script-1V Language Reference.

124
Copyright © 2021 Thoroughbred Software International, Inc



System Variables

System variables are numeric or string variables that Script-1V/ defines to help you manage certain types
of tasks. In most cases, these variables interact with a Script-I\VV command. Examples of Script-1V
variables include:

VARIABLE INTERACTS WITH
COLUMN INPUT SCREEN
ESCAPE ESCAPE-KEY
FIELD INPUT SCREEN
FILE-SUFFIX OPEN
LENGTH INPUT SCREEN
LINE INPUT SCREEN
MENU-PARMS NOT APPLICABLE
SYSTEM-DATE SET
SYSTEM-TIME SET
TERM-KEY INPUT MESSAGE
INPUT SCREEN
TERMINAL-DATE |SET
TEXT-END READ

Restrictions on Variables

You cannot define a Script-1V reserved word as a variable name. For a list of reserved words, see the
Script-1V Language Reference.

OPENworkshop defines a number of string arrays, for which the meanings are reserved. See the String
Arrays section of this manual.

Environment Tables

OPENworkshop maintains a number of environment tables to help it manage the run-time data
environments and to deliver re-entrance:

JFMT$ |Format Name Table

JWIN$ |Windows Name Table

JPUB$  |Resident Public Programs Name Table
1CH$ Current List of Open Channels
JPREC |Precision

JPFX$ |OPEN files using a full system path

125
Copyright © 2021 Thoroughbred Software International, Inc



On entry to any Script-1V or Thoroughbred Basic Method OPENworkshop saves the current contents of
these tables before passing control to the method. On exit from the method it restores the saved status.

You may override this behavior if you wish any changes your method has made to persist. Use the
following statements with care:

LET JPUB$=""

This statement prevents restoration of the Public Programs Table, leaving any resident public programs
you have added in place.

LET JFMTS$="""

Prevents deletion of the format table(s) you have INCLUDED, leaving added global formats in place.
LET JWIN$=""

Leaves any windows that you have opened in place.

LET JCH$=""

Prevents open file channels from being closed.

LET JPREC=PRC

Prevents precision from being reset to its original setting.

LET JPFX$=""Ffile-name"

Lets you create a path for OPENing the data file. CONNECT VIEW, CONNECT SCREEN, and OPEN
LINK will call the FILE-SUFFIX Method before attempting to open the data-file defined for the Link.

The data-file name will be appended to this path and the system will attempt to OPEN this file using the
full path. If an error occurs, the normal error processing will take place

Note: The FILE-SUFFIX method now executes for an OPEN LINK link-name regardless of whether or
not an ampersand (@) has been specified in the data-file-name.

Procedures Section

The Procedures Section of a Script-IV method consists of one or more independent procedures containing
script commands. These procedures are the main body of the script.

Procedures

A procedure consists of a procedure name followed by one or more script commands. The procedure
name:

» identifies the body of commands as a unique procedure within the script.

» must be different from all other procedures in the script and must not conflict with any keywords.

126
Copyright © 2021 Thoroughbred Software International, Inc



e must begin in column 1, the left-most column of the screen, and must appear on a line by itself.

» can be from 1 through 64 characters long, must not contain space characters, and the first 20
characters must be unique.

» must not be broken or fall onto two lines when referred to by a command.

» can consist of uppercase or lowercase characters, numerals, and the - (hyphen) character.

Main Procedure:

The first procedure in a script is the main procedure and controls all other procedures. When the main
procedure is completed, the script automatically terminates and returns to the previous level. If there are
no commands in the main procedure, the script will automatically terminate and return without processing
further procedures.

Script-IlV Commands

The Script-IV commands are the core of the Script-1V language. Commands are generally grouped
together into a procedure that performs a task. Since the commands tell the system what to do rather than

how to do it, the procedure is self-documenting and descriptive of its purpose.

The Script-IV Language Reference provides a detailed description of the Script-1V commands.

Thoroughbred Basic Functions

The OPENworkshop environment additionally allows Script-1V methods to incorporate Thoroughbred
Basic functions. These are particularly valuable in manipulation of date and string variables.

A full description of Thoroughbred Basic capabilities can be found in the Thoroughbred Basic Reference
Manual.

Types of Scripts

The Dictionary-1V environment supports a number of different types of scripts, each designed to be used
under different conditions. While OPENworkshop continues to support most of these types, the vast
majority of applications will only need to use Type S, Script Methods.

For the sake of completeness, particularly for those readers interested in migrating a 4GL application to
the OPENworkshop environment, the other supported types are described in this section. Scripts written
in Dictionary-1V can easily be converted to OPENworkshop methods by changing the type 1 primary
scripts to OPENworkshop type S methods. The continuation, overlay and public scripts do not need to
have their type changed and, when recompiled, will work properly with the new type S scripts.

You must specify the script type when the script is defined. You can select one of several different types:
method, continuation, overlay and public.

127

Copyright © 2021 Thoroughbred Software International, Inc



The type of script that you select determines how the script is compiled. This affects the command used to
start the script, the script data environment, what happens when the script terminates, and other execution
characteristics.

Script Method

The script method (type S script) is used as a starting point for processing, within the context of this
discussion. You can execute a script method, using the CONNECT directive, from:

*  An OPENworkshop menu, view or screen using the CONNECT METHOD directive.
»  Another script method using the CONNECT METHOD command.

* A 3GL program or Thoroughbred Basic Console Mode, using the RUN PUBLIC "program-name™
directive.

This script automatically creates a backup copy of all re-entrant data. When it terminates, the backup data
environment is restored and execution returns to the class or method that invoked it.

Continuation Script

This script serves as the continuation of a script method or another continuation script. You can execute
this script using the RUN script-name command. This script keeps all files open, retains the values
contained in variables, replaces any other program in memory, accepts data from a script method or
continuation script, and passes data to certain other script types.

Unlike the Dictionary-1V environment, continuation scripts will return to the caller of its parent primary
script on termination.

The Script-1V data environment is shared with the parent script. It must be declared at the beginning of
the continuation script using the same sequence and type of data as the parent script. You can create a
copy module containing the data declarations and use the INCLUDE command to incorporate them into
any script.

Overlay Script

This script serves as an overlay to a script method, continuation, or another overlay script. It is a
specialized type of continuation script that conserves memory and functions somewhat differently from a
continuation script.

You can execute an overlay script from a script method, continuation, or overlay script using the RUN
OVERLAY script-name command. The overlay script can accept and return the entire environment
between it and its parent script. This script operates in its own memory segment. When it terminates,
execution returns to the executing script at the command following the RUN OVERLAY command.

The Script-1V data environment is shared with the parent script and script set; it must be declared at the
beginning of the overlay script using the same sequence and type of data as the executing script. You can
create a copy module containing the data declarations and use the INCLUDE command to incorporate
them into any script.

128

Copyright © 2021 Thoroughbred Software International, Inc



This script provides an independent 3GL data environment, which can include variables and numeric
arrays, which is not affected by and does not affect the 3GL data in the executing script.

The RUN script-name command is not allowed in an overlay script. However, you can use the RUN
PUBLIC script-name and RUN OVERLAY script-name commands.

Only one ESCAPE-KEY procedure command can be specified in an overlay script.

Public Script

This script serves as an independent subroutine to a primary, continuation, overlay, or another public
script. Having an independent data environment, the public script does not belong to a script set or have a
parent script.

You can execute a public script from a primary, continuation, overlay, or public script using the RUN
PUBLIC script-name command. Public scripts do not automatically pass any data and operate with an
entirely independent data environment. A public script only knows what is explicitly passed to it and what
it declared within it. When it terminates, execution returns to the executing script at the command
following the RUN PUBLIC command.

This script provides an independent 3GL and Script-1V data environment that is not affected by and does
not affect the data environment in the executing script, but values can be passed to and returned from a
public script.

A public script must contain the ENTER PUBLIC command as the first command line in the script after
the data declaration.

The RUN script-name command is not allowed in a public script. However, you can use the RUN
PUBLIC script-name command.

Only one ESCAPE-KEY procedure command can be specified in a public script.

Diagram of Control Relationships Among Scripts

The following diagram indicates the control relationships between the different types of scripts:

129
Copyright © 2021 Thoroughbred Software International, Inc



Script Execution Environment

Data Environment

Type of Script |Data Environment

Script-1V 3GL

Method Initial data declaration. All values |All values are initialized.
are initialized.

Continuation  |Data declarations must match the  |All values from the executing script are
parent script. automatically available.

Overlay Data declarations must match the  |All values are independent of the
parent script. executing script.

Public Script  |Data declarations are independent |All values are independent of the

of the executing script. All values |executing script except those passed and
are independent of executing script |returned.

except those passed and returned.

Control Structure

Script and Thoroughbred Basic methods are able to connect to other methods, including themselves. Each
connect creates a new (higher) level within the OPENworkshop control structure.

Method A connects to Method B, which in turn connects to a further instance of Method A. They both
terminate, then Method A connects to a further instance of Method A, and so on.

UPDATE Command

With OPENworkshop the UPDATE command is supported by the Script-1V language. The command
combines capabilities of ADD, DELETE and CHANGE commands.

UPDATE is syntactically similar to the CHANGE command. The main difference is a new function
string. This string indicates whether the UPDATE command is to "A" - ADD, "U" - CHANGE, or
"D" - DELETE the specified record(s).

UPDATE also supports two new areas of Script functionality:

* Link I/O Trigger Processing

» Format-based Delete Values Processing and Audit Processing

The UPDATE command supports Transaction Processing. It creates a transaction to include all 1/0
triggers that are executed prior to the initial UPDATE being completed. If any of the triggers fail, the
UPDATE will rollback any Basic 1/O that has taken place. If the triggers pass, the initial UPDATE is

completed and all data within the transaction is committed to the database. By default Transaction
Processing is enabled. It can be disabled by adding the following entry to the IPLINPUT file:

PRM NOTRANS

130
Copyright © 2021 Thoroughbred Software International, Inc



For a summary of functionality see the Comparison of Functionalities chart below:

Format Delete  |[Format-Based  |Link I/O Trigger
Values Audit

Single/Multi Record Maintenance |Yes Yes No

CONNECT SCREEN/VIEW Yes Yes Yes

Script ADD N/A No No

Script CHANGE N/A No No

Script DELETE No No No

Script UPDATE Yes Yes Yes

Syntax

UPDATE link-name function [USING key-file-access] [index-file-access]
[MISSING KEY [PROCESS IS] procedure]
[BUSY [PROCESS 1S] procedure]
[END [PROCESS IS] procedure]
[ERROR [PROCESS IS] procedure]
[SELECT [WHEN] condition] [PROCESSING [1S] procedure]
[TEXT "text-id" [WINDOW window-options]]
[RETRY [IS] retry-code-string]

function = "A" - Add record. Record range/access not valid.
"U" - Change record. Record range/access valid
D" - Delete record. Record range/access not valid.
Examples

UPDATE OELINVH "'U™
USING KEY SORT 1
RANGE FROM OLDK$
TO OLDK$
PROCESSING IS INVHUPDATE

Change sales rep and/or
customer key for all
invoice records

using old

customer key.

131
Copyright © 2021 Thoroughbred Software International, Inc



Format
Dielete
“values

Pazs

URDATE

Fail

Record Cannot
be Deleted
Dialogue

Link 140
Trigaer
Found

ki

Execute 10
Trigger

RETURM
DIRECTIE =

Requestad

File 1/00 Message

Ermr
Message

Format-Based
Hadits

Meat
Command

Example of Script-1V Method (this example is on your system)

LN OELINVH, OELINVN, OELCUST, OELSLRP
FN OEFINVD INVDTL

FORMAT INCLUDE #OEGF, OPT="'NONE" I Include global flags defn.

FORMAT INCLUDE #OEFINVN, I Include
OPT=""NONE"" I inventory fmt.

LET FUNC$=MSG1$[0], I Set: 1/0 function
CUSTC$=#OEGF .CUSTC, I  Cust code changed flag
SRC$=#0EGF.SRC, 1 Sales rep code changed flag
INVENC$=#OEGF . INVENC, I Inventory code changed flag
INVHD$=#0EGF . INVHC I Invoice header delete flag

132

Copyright © 2021 Thoroughbred Software International, Inc




IF POS(FUNC$="AUD")=0 OR
CUSTC$="X" OR
SRC$="X"" OR
INVENC$="X" THEN

LET MSG1$[0]="."
TERMINATE
ENDIF

IF #OEFINVH. INV-PRINTED-FLAG =
""P" THEN
LET MSG1$[0]="ERROR OEERMO1"
TERMINATE
ENDIF

IF INVHD$="X"" THEN
PRINT @(0,0),MSG2$[1].
ENDIF

LET OEFINVD=MSG2$[0],
DNEW = OEFINVD.INV-LEXTEN,
TNEW = OEFINVD. INV-LTAX,
QNEW = OEFINVD. INV-QTY,
SRNEW$ = OEFINVD.SR-CODE,
CCNEW$ = OEFINVD.CUST-CODE,
ICNEW$ = OEFINVD. I TEM-CODE,
OEFINVD= FMD(*#OEFINVD™),
DOLD = OEFINVD.INV-LEXTEN,
TOLD = OEFINVD.INV-LTAX,
QOLD = OEFINVD. INV-QTY,
SROLD$ = OEFINVD.SR-CODE,
CCOLD$ = OEFINVD.CUST-CODE,
ICOLD$ = OEFINVD. 1 TEM-CODE

IF FUNC$=""U" THEN
LET DELTD = DNEW - DOLD,
DELTQ = QNEW - QOLD,
DELTT = TNEW - TOLD
ELSE
LET DELTD = OEFINVD. INV-LEXTEN,
DELTQ = OEFINVD. INV-QTY,
DELTT = OEFINVD. INV-LTAX
ENDIF ! endif

IF CVT(ICOLDS,128)=""" THEN
LET ICOLD$=ICNEWS$
ENDIF

IF FUNC$="D"" THEN
LET DELTD =: * (-1),

DELTQ =: * (-1),
DELTT =: * (-1)
ENDIF ! endif

IT not add/chng./del. or
customer code changed or
sales rep code changed or
inventory code changed

Then set ok return status.

Get out.

endif

I If invoice printed

Print no mods allowed msg.
Get out.
endif

IT invoice header change
Show line items.
endif

Set new invoice detail record
line extension amount
line tax amount
quantity
sales rep code
customer code
inventory item code

Set old invoice detail record
line extension amount
line tax amount
quantity
sales rep code
customer code
inventory item code

1 If update

1 Set delta: dollars.

1 quantity.

1 tax.

1 else

1 Set line item: dollars
! quantity
1 tax

IT old inventory item = space
Set it to new item
endif

IT delete being done
1 Reverse delta
value

sign

133

Copyright © 2021 Thoroughbred Software International, Inc




IF DELTD OR DELTQ OR

SROLD$SRNEWS OR
CCOLDS$CCNEWS OR
ICOLDSICNEWS THEN

IF (DELTD OR DELTQ) AND
INVHD$*X"" THEN

OPEN LINK OELINVH
LET OEFINVH.INV-NUM =
OEFINVD. INV-NUM
UPDATE OELINVH "'U™
PROCESSING 1S INVHUPDATE
CLOSE LINK OELINVH
ENDIF

IF DELTD OR DELTQ OR

CCOLD$CCNEWS$ THEN

OPEN LINK OELCUST

LET OEFCUST.CUST-CODE =
CCOLD$

UPDATE OELCUST "'U™
PROCESSING IS CUSTUPDATE
BUSY PROCESS CUST-BUSY

IF CCOLD$ CCNEW$ THEN
LET OEFCUST.CUST-CODE =
CCNEW$
UPDATE OELCUST "'U™
PROCESSING 1S
CUSTUPDATE1
ENDIF

CLOSE LINK OELCUST
ENDIF

IF DELTD OR DELTQ OR
SROLD$SRNEWS$ THEN
OPEN LINK OELSLRP
LET OEFSLRP.SR-CODE =
SROLD$
UPDATE OELSLRP
PROCESSING

oy
IS SLSRPUPDATE

IF SROLD$ SRNEW$ THEN
LET OEFSLRP.SR-CODE =

IT dollars or gty or
sales rep code or
customer code or
item code changed

IT dollars or gty changed &
invoice header not being
deleted

Open invoice header link
Set invoice header
invoice number.
Update invoice
header amount.
Close invoice header link
endif

IT dollars or gty or
customer code changed
Open customer file link
Set customer code
to be updated.
Update old customer
record
Update format if busy

IT cust code was changed
Set new customer
to be updated
Update new
customer
record
endif

Close customer file link
1 endif

IT dollars or gty or
sales rep code changed
Open sales rep file link.
Set sales rep code
to be updated.
Update old sales
rep record.

IT sales rep code changed
Set new sales rep code

SRNEWS ! to be updated.
UPDATE OELSLRP "'U" ! Update new
PROCESSING 1S ! sales rep
SLSRPUPDATE1 ! record.
ENDIF ! endif
CLOSE LINK OELSLRP ! Close sales rep file link
ENDIF I endif
134

Copyright © 2021 Thoroughbred Software International, Inc




IF DELTD OR DELTQ OR
ICOLDSICNEWS$ THEN
OPEN LINK OELINVN
LET OEFINVN.ITEM-CODE =
I1COLDS$
UPDATE OELINVN
PROCESSING

nye

IS INVENUPDATE

IF ICOLD$ ICNEW$ THEN

LET OEFINVN.ITEM-CODE =
ICNEWS

UPDATE OELINVN ™'U™
PROCESSING 1S

INVENUPDATE1
ENDIF

CLOSE LINK OELINVN
ENDIF

ENDIF
LET MSG1$[0]="."
INVHUPDATE

LET OEFINVH.INV-AMOUNT=:
DELTT

+ DELTD +

CUST-BUSY
LET OEFCUST = #OEFCUST

DO CUSTUPDATE
LET #OEFCUST

LET RETRY =

= OEFCUST
IICII

CUSTUPDATE
LET OEFCUST.CUST-SALES=: + DELTD

IF CCOLD$CCNEW$ THEN
LET OEFCUST.CUST-SALES=:
ENDIF

- DNEW

CUSTUPDATE1
LET OEFCUST.CUST-SALES=: + DNEW

SLSRPUPDATE
LET OEFSLRP.SR-SALES=:
IF SROLD$SRNEW$ THEN

+ DELTD

LET OEFSLRP.SR-SALES=: - DNEW
ENDIF
SLSRPUPDATE1
LET OEFSLRP.SR-SALES=: + DNEW

IT dollars or gty or
inventory code changed
Open inventory file link.
Set old inventory code
to be updated.
Update old
inventory record.

IT inventory code changed
Set new inventory code
to be updated.
Update new
inventory
record.
endif

Close inventory file link.
endif

endif

Set ok return status.

Invoice header update

Update the
data record
format.
Continue with next directive

old
customer
total
sales
update.

New customer
sales update.

Old sales
rep record
sales

update.

New sales rep record
sales update.

135

Copyright © 2021 Thoroughbred Software International, Inc




INVENUPDATE I 0ld inventory
LET OEFINVN.ITEM-SALES=: + DELTD I record
IF ICOLD$ICNEWS$ THEN ! sales
LET OEFINVN.ITEM-SALES=: -DNEW ! update.
ENDIF !
INVENUPDATE1 I New inventory
LET OEFINVN.ITEM-SALES=: + DNEW I record sales update.

Creating Thoroughbred Basic Methods

Methods may be written in Thoroughbred Basic. Thoroughbred Basic capabilities are described in the
Thoroughbred Basic Reference Manual.

Note: Thoroughbred Basic Methods must be maintained in Source-IV.

The scope of this section is limited to an explanation of factors that affect the use of Thoroughbred Basic
in OPENworkshop.

Thoroughbred Basic Methods in Source-1V

When creating a Thoroughbred Basic method in Source-1V, specify it as type M.

CONNECT in Thoroughbred Basic Methods

The CONNECT directive is not valid in Thoroughbred Basic, and the Thoroughbred Basic environment
will not automatically create and dimension the string arrays used to communicate parameters and
messages. The Thoroughbred Basic method must dimension the required arrays and CALL a program as
follows:

CONNECT CALL ARRAYS
HELP 004, 001Z HELP$[4]
MENU 001, 001Z MENUS$[3]
QUERY 00R QUERY$[11]
REPORT 00R REPORT$[11]
SCREEN 002A SCREEN$[17]
VIEW 003A VIEWS[19]

Please see the on-line help for a description of the CALL lists for these calls.

136
Copyright © 2021 Thoroughbred Software International, Inc



Thoroughbred Basic Language Restrictions

The following directives must not be used in OPENworkshop:

BEGIN

CLEAR

CLOSE

END

FORMAT DELETE ALL
PRINT "WC", or "WO"

NOTE: System format #IDSV is automatically included.

If a Thoroughbred Basic method needs to open a channel, the UNT function must be used to obtain the
next available channel.

CUEXIT is a standard routine, which will close all channels opened by the program, delete any windows,
which were created, and set the precision back. For more information, see the Associated Systems section

of this manual.

137
Copyright © 2021 Thoroughbred Software International, Inc



ASSOCIATED SYSTEMS

This section provides information about systems and facilities that can be utilized by OPENworkshop
applications:

» Testing and Debugging

* The Cross Reference system
e Gateway for Windows

e Security

e Controlling access to Developer facilities

Testing and Debugging Environment

OPENworkshop provides testing and debugging facilities. System activity can be traced and trapped, and
data values investigated using a set of run-time utilities. To make the debugging environment available,
ensure that the IPLINPUT file contains the statement:

PRM DEBUG=00Z00

Activating the Debugging Environment

At any time during development or testing of an OPENworkshop application with graphical user interface
(GUI) active, press Ctrl-B to invoke the debugging environment. In windows, the following message will
be displayed:

[E] =Debug= 10|

Class/Method Execution Stack - Debug Regquested!
4-003A

3-001Z

2-001E

1-o01

0-o0

[ S E3

0ther
Console
DictIU
TUX
Edit
Edit-#
Cancel
Release

[PT-IU Sample: Line Dffset i}

48

as/a1./91

11/28/87

entory file

il

as/e1/M

8z/81/88

> |1

[

O

Copyright © 2021 Thoroughbred Software International, Inc

138




The highest number displayed provides the interrupted level. In the example above, the number is 9.

OPENworkshop displays the current stack of classes and methods in progress. Active classes and
methods are displayed with the highest numbers being the most recently invoked. A short menu displays
the options available at this stage:

Option | Action

Data | Allows the developer to investigate the current data environment.

Other | See the Other debug functions section later in this manual.

Console | Enters the Thoroughbred Basic Environment.
DictlV | Presents the Dictionary-IV Menu.
TUX | Enters Thoroughbred's TUX utility.
Edit | Enters Source-1V for the program that is interrupted.

Edit-X | Enters Source-1V for general program editing.

Cancel | Returns to executing the current program.

Release | Exits the Thoroughbred Environment.

Data

When you select Data, the method levels display:

[[] Method Lvl =] EX

3-0012
2-0012
1-001
a-00

Select the method level and the following displays:

M SIS E3

Arrays......
Format/Table
Local Fmts..
Global Data.
Global Sum..
Selective...

139
Copyright © 2021 Thoroughbred Software International, Inc



Option | Action

Variables | Displays the status of all variables in the current environment.

Arrays | Displays the status of all arrays in the current environment.

Format/Table | Displays global formats.

Local Fmts | Displays Script formats containing links.

Global Data | Displays the status of all global data.

Global Sum | Displays size information on global data.

Selective |Allows a selection of data types to be displayed.

The following diagram shows a window displayed after selecting Format/Table from the menu.

M IS s ES

00FFHT
IDsSU
IDIHSTD

Make your selection and the system displays the following:

LEVEL=Z2 = Datanames————— =
#IDSV Nunker of data elements = 120
LWORK1-12 Length = 12
1: " " $20202020 20202020 20202020%
.NOT-USED-1 Length =3
1: "Iop" 4044444
.DATE-FOEMAT Length = 1
1: "a" §413
.FUNC-EEY-YN Length = 1
1: "x" 593
.HELP-DOC-NAME Length = 8
1: " " $20202020 Z0202Z020%
.LEN-DICT-REC = 256
. TEFMINAT-DATE Length = 8
1: "0Z/06/98" $30322F30 J6ZF3938%
LAUTO-EEEC-FLAG Length = 1
1: ™" §20% LI

The window is displayed in text editing mode, allowing you to page through the file, or enter a search for
values or data element names.

140
Copyright © 2021 Thoroughbred Software International, Inc



This example displays data element name information for Level 2 and the contents of the global data
element name #IDSV. To investigate the data element name values for a different level, move the cursor
to the level displayed, for example, over the 2 in the example above, type in the level you want to check,
and select End (F4).

To search for a data element name or any other string in the file, select Search (F10), provide the name to
be searched for, preceded by a " (quote) and select OK (Enter).

Other

When you select Other the system displays the following menu:

M M= E3
System Ualues

Functions
Windows Detail
Windows Summary
Loop Control
Devices

Added Classes
IPL Info
Source—-IVU

The options shown above give you access to the items as indicated in the menu and below. As with the
data environment, you can review the values at different levels by modifying the level indicator and
selecting End (F4).

Item | Information

System Values | Values of all system variables in the environment.

Functions | Location and use of functions.

Windows Detail Detailed status of all windows in the environment.

Windows | A summary of the above.
Summary

Loop Control | Status of any loop control statements that are active, e.g., WHILE,
GOSUB, and so on.

Devices | Channel assignments for files, printers, terminals, and other device
control status information.

Added Classes | Lists all classes or methods that have been added to the environment.
IPL Info | Current status of IPLINPUT parameters.

Source-1V | Displays the Source-1V menu. (For more information see the
Source-IV Reference Manual.

141
Copyright © 2021 Thoroughbred Software International, Inc



Breakpoints

Breakpoints can easily be added to methods to trap any combination of program path or condition. A
convenient way to create a breakpoint is to edit the method to insert code that tests for the required
condition, then executes a statement of the kind:

INPUT "Breakpoint Reached",A$

When this message appears, press Ctrl-B to enter the debugging environment. On exit from the
debugging environment, the interrupted method continues execution.

Global Cross Reference System

The Global option on the Dictionary-1V menu allows you to access the OPENworkshop global cross-
reference system. To use the system you first create cross-reference tables containing the references you
need, then view them. A new set of tables can be created whenever you wish.

Select 1-Edit from the Development Menu or press F1 from any Dictionary-1V menu. The system
displays the Class pop-up window:

[ -] M= B
Format
View 0W
View IU
Screen
Link
Menu O
Menu IV
Message
Help
Report
Query
System
Global

Select 8-Global. When you first enter this system you must create the cross-references you require. The
system displays the following:

= Global Systems Definition

Sys Dict-Iv Method Created
1d Description Libraries Libraries Date

0E Example Application 1 a 82/27/98
K[c[r[e[> ]l ] 0|

Select Line Insert to add a new line to the Global Systems Definition, enter the System ID and
description.

= Global Systems Definition

Sys Dict-Iv Method Created
1d Description Libraries Libraries Date

8 a 83/19/98
DE Example Application 1 9 w2/27/98
Klc[alef>nfal] ¥

Copyright © 2021 Thoroughbred Software International, Inc



In the Dictionary-1V Libraries column press the Enter key and type the names of the libraries you wish to
add to the list shown. Note that more than one library can be specified in this list. Enter the Library. Press
F2 to display the Library View.

Dict-IV
Libraries

K| < fl-}l

Press the Tab key. Press the Enter key. Use the same procedure to add the Method libraries column,
press Tab key, and then press the Enter key to add the Method libraries.

Move the cursor to the System ID column and select the Create (F5) option to build the cross-references.

143
Copyright © 2021 Thoroughbred Software International, Inc



You may also press F16 to create a report:

00-RSYSD Global XREF - Data Hames

82/06/98 Example Application

Data Hame TypefUsed TypefUsed

CUST-ADDRESS F-DEFCUST F-OEFCUSTH
S-DESCUST S-0ESCUST1
U-DEVUCUST U-0DEUCUSTZ
U-DEVUCUSTX U-0DEUCUSTZ

CUST-CITY F-OEFCUST F-OEFCUSTH
B-ODELCUST B-OELCUSTZ
S-0DESCUST S-0DESCUSTAH
U-DEVUCUST U-OEUCUSTAH
U-OEUCUST2 U-OEUCUSTH
U-DEUCUSTZ r—O0ERINUD

CUST-CODE F-DEFCUST F-DEFCUSTH
F-DEF IHUD F-OEFINUH
M-DEM1 S-OESCUST
S-0ESCUST U-0EUCUST
U-0DEVCUST U-0DEUCUSTZ
U-OEVCUSTX U-0EUCUSTZ

Enter window control or <{CR> to continue.

Once the cross-references are built, press F1 in the Sys Id column to explore the cross-reference
information that is available through the following WhereUsed menu:

WhereUsed =] EY
FORMAT

VIEW
SCREEN
LINK
MENU
HELP
REPORT
QUERY
METHOD
FILE
GLOBAL

Each option allows you to select a class or other set of system components to review. For example, the
FORMAT option displays all formats in the system and shows where they are used. Select FORMAT to
produce the FORMAT Where Used View, for example:

£= FORMAT Where Us...

Format
Name Used By |Type
OEFCUST _|DEFCUST |Link
DEFCUST |OELCUST |Link
ODEFCUST |DELCUSTA |Link
ODEFCUST |DELCUST2 |Link
ODEFCUST |ODESCUST |Scrn
DEFCUST |DESCUSTA [Scrn
DEFCUST |OEUCUST |View
DEFCUST |OEVUCUST1 |View
ODEFCUST |OEVCUST2 |View
DEFCUST _|OEVUCUSTX |View
OEFCUST _|DEVUCUSTZ |View

Klc|r[s]>[n]4 »

144

Copyright © 2021 Thoroughbred Software International, Inc




This view shows where every Format in the selected system is used and the type of system component
that uses it. Note that all of the classes themselves can be displayed or edited from this where-used view.
Move the cursor to the required item and select Edit (F1) or Display (F2).

F1to Edit

B> .!E
Fld K F Help Y PDHEWUUDDS
Hum - Data Hame ——— - ~Field Size- ¥ S Code H DT TTVERSIE
|1 |CUST-CODE [ I'v—u Cuset1 |H (8 |8 |8 (@
[ 2 [cUST-CONTACT 25 [N [N Tcusez [N e (e e |2
| 3 |CUST-HAME a8 H |H Hl|o @ |8 |2
| & |CUST-ADDRESS an H |H H|b |8 |8 @
| 5 |CUST-CITY 25 H |H H|o @ |8 |2
| 6 [CUST-STATE 2 H |H H|o @ |8 |3
|7 |CUST-2IP 18 H |H H|b |8 |8 @

8 |CUST-PHOHE 18 H |H H|4% |8 |8 |3
| @ |CUST-DISC L H |H H|o @ |18 |3
| 10 [CUST-CRLMT 5.0 H |H H|o [0 |1 |8

11 |CUST-STC 2 H |H H|@ (@ |8 |8 |3
| 12 [SR-CODE 2 H |H H|@ |8 |8 |3 |4
| 13 [CUST-COMMENTS 1 H |H H|é |0 |8 |0 ¥

1% [CUST-SALES 11.2 ELBUH& H|A @ |@ |8

K<t (4[> ]« | H

F2 to Display
1 CUST-CODE 3 NCUs0l Y000O0N 1
««.3pecial Prompt:
ve([1]

...... Pre Process:
CONNECT(1] REPORT OERCUST;
CONNECT(2] METHOD OE2S5TST START;
CONNECT METHOD OEZSTSTO
.....Fost Frocess:
CONNECT METHOD OEZ3TST1
2 CUST-CONTACT 25 NCU3DZ NZOODON J
.. .Special Prompt:
VeLEl;
sp[8]
...... Pre Process:
CONNECT(Z] METHOD OEZSTST4 PASSED-PARM
-....Post Process:
CONNECT METHOD OEZ2STST4 POST-TEST
3 CUST-HAME 30 N HZODDORN 3z
- ..5pecial Prompt: ﬂ

The GLOBAL option of the WhereUsed menu shows where data element names are set or used:

Eu? WhereUsed WS E
FORMAT
UIEUW
SCREEN
L INK
MENU
HELP
REPORT
QUERY
METHOD
FILE

GLOBAL

Select GLOBAL to display the Global Dataname Where Used menu:

Ei Global Dataname Where Used [HJEl E3

GLOBAL Dataname Selected System
GLOBAL Dataname All Systems

145
Copyright © 2021 Thoroughbred Software International, Inc



Selecting the highlighted option displays the following menu:

Ef Usedey HIE E3 |

As before, you can review or change the definitions of items from these views. These cross-reference
views are extremely flexible and powerful as can be seen from the following examples.

The Used By Format option shows which formats contain a definition of which data element names
throughout the application.

£= DN/FORMATS where used ... [H[E E3

|Data Hame Ky Format

CUST-ADDRESS _ [0EFCUST
CUST-ADDRESS _ |oeFcusT:
CUST-CITY OEFCUST
CUST-CITY OEFCUST?
CUST-CODE OEFCUST
CUST-CODE OEFCUST?
CUST-CODE OEFINUD
CUST-CODE OEF INUH
CUST-COMMENTS OEFCUST
CUST-COMMENTS OEFCUST:
CUST-CONTACT OEFCUST
CUST-CONTACT OEFCUST:
kKl<| v+ >]an]4] ] 3

L e e == i

The Used By Method option shows all data element names that are used by methods, and whether the
method simply read the data name or may also set its value.

The Used By Data Name option shows data element names that are set or used from other data element
names. Typically these uses are to be found in data element name pre-process or post-process definitions.
The normal order of presentation of the format name and data element name in the left hand column of
this display is reversed, so that data element names are listed in alphabetically sorted order.

| set/

Data Hame Used/Set By Dataname Used
INV-LPRICE .OEFINVD OEFINVYD.ITEM-CODE )
THU-HUH.OEF INUH OEF INVH . IHU-AMOUNT u
ITEM-CODE.OEFINUD DEFINUD.ITEH-CODE 3
ITEM-CODE .OEFIHUEH OEFIHUEH. ITEM-SALES u
ITEH-CODE.OEFINUN OEFTHUD. ITEM-CODE u
ITEM-CODE.OEFINUN OEFIHUH.ITEM-CODE u
ITEH-CODE.OEFINUN OEFTHUH. ITEH-SALES u
ITEHM-PRICE .DEFINUN OEFINUD.ITEM-CODE u
kKlc[+a]>]n]4] ]| 2

146
Copyright © 2021 Thoroughbred Software International, Inc



The Used By All option shows all uses of data element names by all classes and methods in the
application.

= DATANAME Where Used View

K set/ Used

Data Hame y Used Type Used By

CUST-ADDRESS — u Fnt | DEFCUST

CUST-ADDRESS u Fnt | DEFCUSTX

CUST-ADDRESS .OEFCUST u Scrn | DESCUST
CUST-ADDRESS .OEFCUST u Sern |DESCUSTA
CUST-ADDRESS . DEFCUST U |view [DEUCUST1
CUST-ADDRESS .0EFCUST U [view [DEUCUST2
CUST-ADDRESS . DEFCUST u Uiew |DEUCUSTX
CUST-ADDRESS .DEFCUST U [uview [DEUCUSTZ
CUST-CITY U [Fnt_[DEFCUST
CUST-GITY _ u__|[Fnt_[DEFCUSTX
CUST-CITY.DEFCUST U |Link |[DELCUST
K< +[a]>]n]4] | |

Communication with Gateway for Windows

Gateway for Windows enables a host application to communicate directly with any application software
running in the Microsoft Windows environment. It uses DDE communications to transport data between
the software running in the Windows environment and the host application. OPENworkshop applications
are able to communicate through Gateway for Windows.

You can communicate data through Gateway for Windows using Report-1V, Query-1V, or a method. For
more information on Gateway for Windows, see the Gateway for Windows Reference Manual.

The following chart was produced by Microsoft Excel, based on the output from a Report-1V report.

Customer Sales

ACME Inc.

Computer Inc.

Fix-M-Up

Lumber Inc.

Femony Lanes

0K Development

Today's Company

Toot-f our-Horn

T T T T T T T T 1
] 2000 4000 E00D 2000 10000 12000 4000 1000 12000

147

Copyright © 2021 Thoroughbred Software International, Inc



The report that produced the chart follows:

ENTRY-SECTION

1111 DIM M$[5];

: R5 =0
1 Start Excel running
1112 M$[1] = "I13";
: M$[2] = "EXCEL";
: M$[3] = "SYSTEM";
: CALL ""GWWCOM'", M$[ALL]
1 Set Excel column width
113 M$[1] = "E";
M$[5] = "[SELECT(" + QUO + "C1"™ + QUO + "™H]"
+

"' [COLUMN.WIDTH(20)]1"
“[SELECT(" + QUO + "R1C1" + QUO + ")]":
CALL "GWWCOM, MS$[ALL]

+

Select sheet 1

1121 M$[1] = "P";

: M$[3] = "SHEET1"

1 Termination. Draw chart of the top 8.
T911 M$[1] = "E";

: M$[3] = "SYSTEM";

: M$[5] = ""[WORKBOOK.INSERT(2)]1"

: + "[CHART.WIZARD(TRUE," + QUO + "SHEET1!IR1C1:R8C2'" + QUO
: + ',10,1,2,,,2," + QUO + "Customer Sales"™ + QUO

: + "," + QUO + QUO + ',™ + QUO + QUO + ", + QUO + QUO

: +",1,0)]";

: CALL *‘GWWCOM™, M$[ALL]

1

Terminate DDE, leave Excel running
T921 MS$[1] = "T";

: CALL ""GWwCOM™", MS$[ALL]

FILE-SECTION

LN OELCUST SORT BY SORT2

: SELECT WHEN CUST-CODE LIKE *100*"

CONTROL-SECTION

REPORT-SECTION

For each row send customer name and
sales to Excel worksheet columns 1

1 and 2.
DC R5 = R5 + 1;
: R5% = STR(R5)
DC M$[4] = "|R™ + R5$ + "C1]|"
: + "]R" + R5$ + "C2|"
DC MS[5] = "|"" + CUST-NAME + """
: + "|"™ + STR(CUST-SALES) + "|"
DC CALL "GWwCOM™, MS$[ALL]
148

Copyright © 2021 Thoroughbred Software International, Inc



Security

The OPENworkshop security system was designed to be a logical layer of security that exists on top of an
operating system'’s security. It is based on UNIX concepts, but accommodations have been made to allow
the logical security layer to function with other operating systems such as Windows, and Open VMS.

The primary features are:

»  Group level access to menus and selections from menus.

»  Group level access to data file links.

*  Group level access to fields within a data file.

»  Group level access to record levels.

*  Drill down views of user 1Ds and groups that quickly show users within group and groups of which a
user is part.

» Prior versions of security that show the delta from one version to the next.

* Reports showing group to user and user to group association.

» Initialization and regeneration of logical security layer from user ID and group files after
modifications.

Scope

Security locks may be specified for links, menus and data element names. This is done by specifying a list

of groups allowed access. Users who are not part of these groups are denied access. The format of the

specification is:

[group-nbrl,group-nbr2, . . . ,group-nbrn]

Example:

[15,25,50,51]

In the above example, a menu, link or data element name containing this specification allow access to

users who are part of groups 15, 25, 50 or 51. Users who are not part of groups 15, 25, 50, or 51 are

denied access.

Note: Menus, links and data element names that do not contain a group security lock are accessible by
all groups.

149

Copyright © 2021 Thoroughbred Software International, Inc



Menus

The security lock specification can be placed in the menu header or on a MENU selection.

MN 11,581 [15,58 51] +
$election 1 [15] CONMECT WIEW uwieWw-name
Selection 2 [GA] CONMECT METHOD method-name j

Selection 3 CONNECT WIEW view-name

Assuming the above menu, the following is true:

e Only users in group 15, 50 or 51 have access to the menu.

e Only users in group 15 can execute selection 1 from the menu.
e Only users in group 50 can execute selection 2 from the menu.

* Any user allowed access to the menu could access selection 3.

Links

The security lock specification can be placed in the link terminal access codes. The group humbers can
now contain an R for Read-only access when using CONNECT SCREEN and CONNECT VIEW.
CONNECT SCREEN will be forced into Inquiry mode and CONNECT VIEW will run in PRINT VIEW
mode.

Example 1:

0,70,71 [15,50R,51] |

Users in group 15 or 51 would have access regardless of terminal, whereas group 50 will have Read-Only
access in CONNECT SCREEN (Inquiry Mode) and CONNECT VIEW (PRINT VIEW mode).

Example 2:

1,T0,T1 [15,50,51]

Only users in group 15, 50 or 51 are allowed access when logged in from a terminal other than TO or T1.
Example 3:

[15,50,51]

Only users in group 15, 50 or 51 are allowed access regardless of their login terminal.

NOTE: For additional explanation of the terminal access code security option, see the Dictionary-I1V
Developer Guide. Remember, the group security option shown above can only be specified in the
terminal access field.

150
Copyright © 2021 Thoroughbred Software International, Inc




Data Element Name

Data element name access restrictions are defined in the security attribute field of the data element name
definition. Groups not having access through the group security option will be restricted by this
specification. The restriction is made up of the following three parts:

security-mode,display-mode[,password]

B [E access re o |01 %
| Edit Format
security-mode ,display-mode[ ,passuord] -

security-mode, display—mode
Restricts maintenance mode. Restricts display.

8 | no restriction (can add/change) Input |Output

1 | add allewed / change restricted

2 | change allowed / add restricted ] NO NO

3 | add/change restricted 1 NO YES

4 | restricted to defined groups 2 YES YES E

[,password] overrides security mode but not display mode. If specified, it is required regardless of other
security settings. An asterisk (*) can be specified as the password and indicates the password is to be the
first 3 characters of the data element name's content.

The security lock specification can be placed in the Data Name security attribute field.
Example 1:
3,2 [15,50,51]

Users in group 15, 50 or 51 are allowed entry and display access to the data element name. All other users
are denied add, change and display access.

Example 2:
1,1 [15,50,51]

Users in group 15, 50 or 51 have entry and display access to the data element name. All other users are
denied change and display access when not adding a new record.

Example 3:

[15,50,51]

All users have entry and display access to the data element name. This is a useless security specification
because no security restriction is specified for users other than 15, 50 or 51.

Record Level

Record Level security allows the access of data records to be restricted to specified group levels. This is

accomplished by defining a 2-character field in the desired format with a security code of 4. For more
information see Format Definition in the Dictionary-1V Developer Guide.

151
Copyright © 2021 Thoroughbred Software International, Inc



When the value of this field matches a record level restriction key, only the groups defined for the key are
allowed to access the data record. This record level security applies to OPENworkshop, Dictionary-1V,
and Report-1V

Administration of the Security System
Principles of operation

OPENworkshop security permissions are maintained in tables that define the relationships between user
IDs and security group numbers. These tables are used at run time to determine access permissions. The
tables are created initially by copying data from the security files in the UNIX operating system.

The OPENworkshop main menu contains the item SECURITY, which is accessible to developers. When
that item is selected, the menu below is displayed.

% |0 Documentation

1 View security versions
2 Yiew groups

3 View user id's

4 Current version delta
5 Edit groups

| |6 Edit user id's

¥ Group restrictions

8 Report [by group]

9 Report [by uzer id]

A Initialize security

B Generate new version
C Set number of versions
D Display security locks

Creating security tables

After initial installation, OPENworkshop does not have the security system enabled. To enable security
you must:

» Select option A: Initialize security. This option removes any OPENworkshop security files.

» Select option B: Generate new version. This option creates a new version 1 set of security tables and
populates them with data taken from /etc/passwd and /etc/group.

» Select option C: Set number of versions. This option controls the amount of history of changes to the
security permissions that is maintained by OPENworkshop.

» Ensure the system user ID and group files reflect the desired user/group relationships for the
installation. Options 5 and 6 (Edit groups and Edit user ID's) can be used to establish desired
relationships in the operating system tables. If not, edit user IDs and groups to the required values,
then use option B again to create a new security version. Option B can be used as many times as
needed to generate new security versions.

152
Copyright © 2021 Thoroughbred Software International, Inc



If you are using a UNIX operating system, you must have root permissions to modify the group or user
ID file.

Reviewing security permissions

Select option 1 from the security menu to view security versions.

=-| Security Yersions

Wer zer| Group|Date Time zerz| Users| Users| Grpz| Gips Grpsl ¥
Hbr |d's |d's|Created |Created [By Added| Ditd| Chngd| Added|  Ditd Ehngdl +
nnz 32 13 03/02/96 | 06:31:00 DD 1] 1] 1 1] 1] 1]
on3 32 13 03/03/96 | 12:25:00 DD 1] 1] 1 1] 1] 2
004 33 13 03/04/96 | 074500 DD 1 1] 1 1] 1] ]

ﬂ.

I |<F2> ta view uger id'z, groups ar delta far security wersion

This view allows the administrator to review the changes made between versions, and the current access
permissions for groups and the members of those groups.

Group restrictions

Data element name access permissions can be further qualified by using the Group Restrictions option
from the security menu. See the Data element name section earlier in this manual for further information
on permissions.

Displaying security locks

The security locks that have been defined by the developer for an application can be displayed and
reviewed using option D from the security menu. Enter a list of one or more libraries to be reported.

This listing shows all security group statements that have been applied to menus, links and data element
names in the selected libraries:

———— MENUS ——— (0Q)
MENU: QOMO Main Menu
Selection: SOURCE-IV CONNECT MENU OOMO02 [1]
Selection: SECURITY CONNECT MENU OOMO5 [1]
MENU: OOMO05 Security Menu [O0.1]
MENU: OOM0OA Developer/User menu [1]
MENU: ©OOMUOA Sample Matrix Menu [50.51]
Selection: 9 [1] COMNECT VIEW CQEVSLSRP
Selection: 10 [1] CONNECT SCREEN OESSLSEP
Selection: 11 [1] COMNECT MENU OEMSLSRP
MENU: OOMU10 Desk Services Menu
Selection: DICTIONARY IV CONNECT MENU OOMO01 [1.T]
Selection: SOURCE-IV CONNECT METHOD 0QO0S [1.T]
Selection: DEVELOPER HELP CONNECT HELF OCOMOB [1.T]
Selection: DEVELOPER DOC CONNECT VIEW DCVDOCA [1.T]
Selection: DEVELOPER ON/OFF CONNECT METHOD QO0700 [1.T]
MENU: ©OOUNX1 Unix command listing
Selection: basename. . basename string [ suffix ]NHELP=8UHbasen
Selection: cal....... cal [[ month ] year ]NHELP=8UHcal
Selection: calendar.. calendar [ - ]NHELP=8UHcalen
Selection: cat....... cat [ option ] filenHELP=8UHcat

153
Copyright © 2021 Thoroughbred Software International, Inc



Developer Status

During development of an OPENworkshop application it is very convenient to be able to access and
change class definitions quickly. It is also essential that these definitions can be protected from change by
other users. This control is provided by the Developer Status.

| [Dictionary-1¥

| [Source-1¥

| [UTILITIES

| |DEVELOPER HELFP

| |PEVELOPER DOC

% [DEVELOPER ON/DFF

| |HELF TOPICS

Solution-1¥

CALCULATOR

| |CALENDAR
WINDOW COMNFIG

Developer Status is controlled by an option on the hotkey (Ctrl-P) menu displayed above. Access to this
item is controlled by menu level security. The user must be a member of security group [01] to gain
access to this menu option.

When Developer Status is enabled for a user, that user has access through F1 to edit views, screens,
menus and help; through F8 to move views, screens, menus and help; and through F11 to edit data
element names.

Selecting DEVELOPER ON/OFF displays the menu below. The Developer Status can be set to
DEVELOPER or USER for individual logins or for all logins to an application.

® [SET DEVELOFPER MODE LOCAL
SET USER MODE LOCAL

SET DEYELOPER MODE GLOBAL
SET USER MODE GLOBAL

The options are described in the following table:

Mode Effect

SET DEVELOPER MODE LOCAL Gives the current user access to classes controlled
by developer mode. This takes place immediately.

SET USER MODE LOCAL Takes away access to developer mode from the
current user.

SET DEVELOPER MODE GLOBAL  |Gives developer mode access to all users who have
the appropriate security group access.

SET USER MODE GLOBAL Takes away developer mode from all users. This
action takes place with effect from the next time
any user logs on.

154
Copyright © 2021 Thoroughbred Software International, Inc



STRING ARRAYS

String arrays are used throughout OPENworkshop to pass information to methods and to return
information to classes that call methods.

Usually these arrays are created automatically for the developer by the class that connects to the method.
However, where a Thoroughbred Basic method is connecting to another method (Thoroughbred Basic or
script) the caller is responsible for creating and dimensioning the array before the CONNECT can be
invoked.

The standard string arrays used in OPENworkshop are explained in detail in the following pages. Each
explanation contains the following:

Purpose  The purpose of the array together with any limitations on its use.
Used By  The type of method that uses the information.

Contents Required entries and their meanings. Where there is a default value for an array entry, it is
indicated by an underscore.

The string arrays described in this section are presented in alphabetic order and include the following:

ARMS$
FA$
HELP$
KT$
LNK$
MENU$
PP$
QUERY$
REPORTS$
SAS
SCREEN$
V$
VIEWS

155
Copyright © 2021 Thoroughbred Software International, Inc



ARMS$
Purpose  Passes data and messages between a screen and an after read method.
Used By A screen when a record has been read and before it is displayed for data entry.

Contents

ARMS[0] |On return from the method the entry contains return directives:

Null or ™. Continue processing record

SKIP Reject record, print "record not found" message

SKIP-NOMSG  |Reject record, don't print message

ARMS$[1] |Data Record Read/Extracted

ARMS$[2] |(1,1) Maintenance mode (A,C,D,I,F,f)
(2,1) File type (D,S,1,C)
(3.1) Forward (F) / Backward (B) read flag
(4,1) Record Extract flag (R,E)
(5,1) Key Value Not Found flag (1=found, O=not found)
(6,1) Term-key (binary)

ARMS$[3] |Key/Record number used for Read / Extract

156
Copyright © 2021 Thoroughbred Software International, Inc



FA$

Purpose  Contains the attributes of the format in use by the caller. This array enables the called method
to derive the current data context and allows the context to be restored when control returns
to the calling object.

The called method must ensure that this array is not modified before it is returned to the
caller, or unpredictable behavior may result.

Used By CONNECT METHOD
The calling class creates FA$[ALL]. The method receives string array MSG3$[ALL]

Contents

FAS$[0] [Format name.

FAS$[1] |Format header.

FA$[2] |(1,1) [Format attribute table entry length (ASC 1 byte).
(2,1) [Number of entries in format table.

(3,1) |Data name table entry length (ASC 1 byte).
(4,2) |Format data record length (Binary 2 bytes).
FAS$[3] |Format attribute table.

FAS$[4] |Audit string.

FAS$[5] |Pre-processing procedure string.

FAS$[6] |Special prompt string.
FAS$[7] |Preset value string.
FAS$[8] [Valid value string.
FAS$[9] |Delete value string.
FAS$[10] |Security value string.

FAS$[11] |Post process procedure string.
FA$[12] [IOLIST
FAS$[13] |Field separator elimination table.

Note: The field separator elimination table can be used in combination with the
RTD function (see the Thoroughbred Basic Reference Manual). This will remove
field separators and pad variable length fields. If the format definition does not
match the data record, the RTD function will generate ERR=1.

FA$[14] |Data name table
(1,1) |Length of a data name entry.

(2,1) |Number of data names.

(3,n) |List of data names.
FA$[15] |Local counters for OO70.

157
Copyright © 2021 Thoroughbred Software International, Inc



FAS$[16]

File channel numbers.

(1.2)

Data file channel number.

(3.2)

Sort file channel number.

FA$[17]

Data name description table in the current language.

Note: When no data name description tables are defined, the data name table will
be returned in place of the data name description table, FA$[14]. If the data name
description table does not exist in the current language, starting with ENglish, the
system will search for and return the first data name description table found.

(L.1)

Length of a data name description entry.

(2.1)

Number of data name descriptions.

(3.n)

List of data name descriptions.

158
Copyright © 2021 Thoroughbred Software International, Inc




HELP$

Purpose  Passes information to the help subsystem when CONNECT HELP is invoked. It is only
necessary to pass HELP$ if the caller wishes to override the defaults or pass substitute
parameters. It is not possible to pass HELP$ from a data name or menu.

Used By CONNECT HELP from a method.

Contents

HELP$[0] [Help control data:

(4,1)= |"C"- |Display help, allow edit option, pop help window upon
termination and return to previous window.

"X" - |Display help, pop help window upon termination and return to
previous window.

"x" - |Display help and leave the help window displayed and selected.
(2,1)= ""- |(space) No heading.

"C" - |Centered heading.

"R" - |Right justified heading.

"L" - |Left justified heading.

Note: The help description will be used as the displayed heading.
HELP$[1] [Help code.

HELPS$[2] |Substitute parameters. The help subsystem will substitute values into a help
message when the help message is appropriately defined and the substitute
parameters are passed through this array element.

The syntax for HELP$[2] is:

[*1/Valuel;*2/Value2,....

/ is the parameter delimiter (slash character is usual).
*1 is any character pair, being the first character string to search for and
replace.

Valuel |is the first replacement string.

; to separate multiple substitution parameters.

*2 is any character pair, being the second character string to search for and
replace.

Value2 |is the second replacement string.

Note: Any number of replacements may be specified by continuing the pattern.

159
Copyright © 2021 Thoroughbred Software International, Inc



KT$

Purpose  Passed to trigger methods to communicate information about the new record and changes in
sort keys following an update to a data file referenced in a link.
Used By CONNECT METHOD
The calling class creates KT$[ALL]. The method receives string array MSG2$[ALL].
Contents
KT$[0] New record (format data) string, i.e., the entire contents of the format relating to
the file, packed into a string.
KTS$[1] Old primary key (SORTO).
KT$[2] New primary key (SORTO).
KT$[3] Old secondary key (SORT1).
KT$[4] New secondary key (SORT1).
KT$[2n+1] |Old secondary key (SORTn).
KT$[2n+2] |New secondary key (SORTn).

NOTE: When a trigger method is invoked the caller must also supply LNKS$, which is used to return
directives to the caller. See the description of LNKS$ in this section and the OPENworkshop Methods
section of this manual.

160
Copyright © 2021 Thoroughbred Software International, Inc




LNK$

Purpose  Contains the attributes of the link in use by the caller. This array enables the called method to
derive the current context and allows the data context to be restored when control returns to
the calling object.

Except for entry LNK$[0] the called method must ensure that this array is not modified
before it is returned to the caller, or unpredictable behavior may result.

Used By CONNECT METHOD

Contents

LNKS$[0] [Link message.

On entry, contains one of the following:

"A" Add.
"y Update.
"D" Delete.

On return must contain one of the following:

Normal exit Requested 1/0 will be completed.

Null Error occurred. Requested 1/O will not be completed
and an "1/0 Not Completed" message will be displayed.

"ERROR [help-code]" |Requested 1/0 will not be completed. The message
specified by the help code will be displayed and an error
will be returned to the caller. If help code is not
specified no error message will be displayed and an
error condition will be returned to the caller.

"EXIT" No error message will be displayed and the requested
1/0 will not be completed by the OPENworkshop
general 1/0 process. However, it is assumed that the 1/0
trigger did the 1/0 and no abnormal condition is
assumed.

LNKS$[1] [Link name.
LNK$[2] [Link header.

LNK$[4] [Terminal access codes.

LNKS$[5] |Operator access codes.

LNK$[6] |Data file name (after suffix substitution).
LNKS$[7] [Sort file name (after suffix substitution).
LNKS$[8] [Text file name (after suffix substitution).

LNK$[9] |(1,2) Primary key length including preset parts.
(2,n) Primary key data name numbers not including preset
parts.
161

Copyright © 2021 Thoroughbred Software International, Inc



LNKS[10]

Data name delete value list.

LNK$[11] [File type:
I Indexed.
S Sort.
D Direct.
C CISAM
LNK$[12] |(1,2) Number of sort defs.
(2,1) Length of sort defs entry.
(3,n) Sort definitions.
LNK$[13] |Sort definition table.
LNK$[14] |Primary key prefix.
LNKS$[15] [Primary key suffix.
LNK$[16] |Generated link 1/0O program name.
LNK$[17] [Mandatory data name number table.
LNK$[18] |Preprocess table:
1,2) Data name number.
(2,1) Function key value.
LNK$[19] |Audit data name number table.
1,2) Data name number.
(2,2) Type audit.
(3,8) Audit file name.
(11,n) Next data name audit info.
LNK$[20] |Last audit ADD key.
LNK$[21] |Generated I/O program.
LNK$[22] |List of text field IDs.
LNK$[23] |Data file name (before suffix substitution).
LNK$[24] |Sort file name (before suffix substitution).
LNKS$[25] [Text file name (before suffix substitution).
LNK$[26] |Operator supplied sorts.

162

Copyright © 2021 Thoroughbred Software International, Inc




MENU$

Purpose  Passes information to the menu subsystem when CONNECT MENU is invoked. It is only
necessary to pass MENUS if the caller wishes to override the defaults.

Used By CONNECT MENU from a method.

Contents

MENUS$[0] [Menu control data:

(1,1) ["C" |Clear menu window and reselect window prior to menu display.

"X" |Leave menu window displayed and selected upon exit.

"x" |Display menu but do not allow user to make a selection. Leave menu

window displayed and selected upon exit.

(2,1) " |(Space) No heading.

"C" |Centered heading.

"R" |Right justified heading.

"L" |Left justified heading.

Note: The menu description will be used as the displayed heading.
MENUS[1] |Menu name.

MENUS$[2] [Menu return value. Return values can only be processed by methods calling
CONNECT MENU and are ignored on return to a data name or menu. The value
is obtained from the second column of the menu definition, and will be set to null
if the user pressed F4.

163

Copyright © 2021 Thoroughbred Software International, Inc



PP$

Purpose  Contains information about the format in use by the caller and the position of the current data
name in a screen or view.

Except for PP$[0] and PP$[2] the called method must ensure that this array is not modified
before it is returned to the caller, or unpredictable behavior may result.

Used By CONNECT METHOD

Contents

PP$[0] |Input: Message from method.

Output: |Return directive.

M= Normal termination.

null = Abnormal termination.

PP$[1] |Data record being processed, concatenated into a single string.

PP$[2] |User input (current field). Used as operator input upon return from post-process
methods only.

PP$[3] |Column/field number.
PP$[4] |Format data name number.
PP$[5] |Column/field attributes:

(1,1) column (binary, counting from 0).

(2,1) row (binary, counting from 0).

(3,1) field size (binary, counting from 0).

4,2) data name number (binary, counting from 0).
PP$[6] H#format-name.

164
Copyright © 2021 Thoroughbred Software International, Inc



QUERY$

Purpose  Provides controls over the queries to be run, output destination and other operational
parameters for Query-1V.

Used By CONNECT QUERY from a method.

Contents

QUERYS$[0] |[Return status:

"Q" On input indicates a query is being selected.

On output indicates normal termination.

QUERY$[1] |Query library name. A two-character library name.
QUERYS$[2] |From Query.

QUERYS$[3] |To Query.

QUERY$[4] |Mask for query range.

QUERYS$[5] [Sort number.

QUERYS$[6] |Query device:

"y Select printer prompt.

null Ask hard copy question.

"N" Terminal output only.

"LP" Printer name.

"Pn" Printer name.

"OP" Use operator default printer.

"SP" Use last printer opened by operator.
"CH:nn" Use channel nn for output.

"ffile-name"  |Create or overwrite output to this file name. Garbage may
exist after output text.

"CR" Query is connected from another query.
[1] Query name (LLQQQQ).
[2] X$ not returned.
[3] H$ returned to calling query.
[4] T$ returned to calling query.
165

Copyright © 2021 Thoroughbred Software International, Inc



QUERY$[7] |Type of output:

"p" PRINT

space PRINT

"W WRITE

"R" WRITERECORD

"N" No output
QUERY$[8] |Query mode:

"D" Print detail lines only. Header and footer lines will not be

printed.

" Normal printing will be done.
QUERY$[9] |Method to execute prior to printing each query detail line.
QUERY$[10] |Window name for a user-supplied window.

When CONNECT QUERY is called from a menu or data name the parameters are supplied in a
comma-separated string. The details are identical to those for REPORTS$, which follows this page. Refer
to REPORTS$ for an explanation.

166
Copyright © 2021 Thoroughbred Software International, Inc



REPORT$

Purpose  Provides controls over the reports to be run, output destination and other operational
parameters for Report-1V.

Used By CONNECT REPORT from a method.

Contents

REPORTS$[0] |Return status:

"R" On input indicates a report is being selected.

On output indicates normal termination.

REPORT$[1] |Report library name. A two-character library name.
REPORT$[2] |From Report.

REPORTS$[3] |To Report.

REPORT$[4] |Mask for report range.

REPORTS$[5] |Sort number.

REPORT$[6] |[Report device:

"y Select printer prompt.

null Ask hard copy question.

"N" Terminal output only.

"LP" Printer name.

"Pn" Printer name.

"OP" Use operator default printer.

"SP Use last printer opened by operator.
"CH:nn" Use channel nn for output.

"[file-name"  |Create or overwrite output to this file name. Garbage may
exist after output text.

"CR" Report is connected from another report.
[1] Report name (LLRRRR).
[2] X$ not returned.
[3] H$ returned to calling report.
[4] T$ returned to calling report.
167

Copyright © 2021 Thoroughbred Software International, Inc



REPORT$[7] |Type of output:

"p PRINT
space PRINT
"W WRITE
"R" WRITERECORD
"N" No output
REPORT$[8] |Report mode:
"D" Print detail lines only (D, CTnn, STnn, CBnn). Header and
footer lines will not be printed.
" Normal printing will be done.

REPORT$[9] |Method to execute prior to printing each report detail line.

REPORT$[10] |Window name for a user-supplied window.

The parameters described above are made available to the report through X$, as shown in the table below.
Within the report definition, say, in the ENTRY SECTION, you can use Thoroughbred Basic code to
evaluate X$ as required.

For example, to determine the sort number from REPORT$[5], evaluate X$(49,2).

REPORT[XX] |[1] [2] [3] [4] [5] [6] [7] [8] []
X$(m,n) (5.2 |(76) [(72.6) |(78,6) [(49,2) |(68,2) [(65,1) |(64,1) |(51,12)

When CONNECT REPORT is called from a menu or data name the parameters are supplied in a
comma-separated string.

For example:

[CONNECT REPORT OERNAME, ,,2,N |

Executes the report RNAME from library OE, using sort number 2 and putting the result straight to the
terminal. This directive will populate REPORTS$ as follows:

REPORT$ Contents Comment
[1] OE Library name
[2] RNAME From report name
[3] RNAME To report name
[4] 277977 Mask for report names range
[5] 2 Sort number
[6] N Report device
168

Copyright © 2021 Thoroughbred Software International, Inc



SA$

Purpose  Contains the attributes of the screen or view in use by the caller. This array enables the called
method to derive the current display context and allows the context to be restored when
control returns to the calling object.

The called method must ensure that this array is not modified before it is returned to the
caller, or unpredictable behavior may result.

Used By CONNECT METHOD

Contents

SAS$[0] [View/Screen name.
SA3$[1] |View/Screen header record.

SA3$[2] |(1,1) Screen attribute table entry length (ASC 1 byte).
(2,2) Number of entries in screen table (ASC 1 byte).
SAS$[3] |[Screen attribute table:
(1,1) Screen position (ASC 1 byte).
(2,1) Screen line (ASC 1 byte).
(3,1) Screen entry length (ASC 1 byte).
(4,1) Fixed attribute entry number (ASC 1 byte).
(5yy) Next screen attribute entry.

SAS$[4] |Screen/view formulas:

Note on formula storage: If a formula is entered, the fixed attribute entry number
above is set to zero and an entry is built in entry [4]. The screen position and line
from the attribute is used to locate the formula.

(1,2) Entry length.

(3,1) Screen position (ASC 1 byte).

(4,) Screen line (ASC 1 byte).

(5,1) Short formula text size 256 bytes (ASC 1 byte).

or

(5,1) $00$ Long formula text flag.

(6,2) Long formula text size.

(x,1) Mask size (ASC 1 byte).

(x+1,1) Short formula Thoroughbred Basic statement size 256 bytes (ASC 1
byte).

or

(x+1,1) $00$ Long Thoroughbred Basic statement flag.

169

Copyright © 2021 Thoroughbred Software International, Inc



(x+2,2) Long Thoroughbred Basic statement.
(xy,z) Formula text.
(x+y+z,m) Screen mask.

(x+y+z+m,b)

Thoroughbred Basic statement.

SA$[5] [View headings when view specified.
SA$[6] |Link header when view specified.
SA3[7] |Pointers to numeric masks.
SAS$[8] [Numeric masks.
SAS$[9] |Printable screen when screen specified.
SA$[10] |Screen input operations table, 8INPUT interface:
(1,2) Last field processed.
(2,1) B Pre-process.
A Post-process.
H  |Help requested. (When first character of help code =".").
F Formula field. (When FUNC$(3,1) =" ").
(3,3) Screen field offset to continue after pre/post process:
0 Last field processed.
1 Next field (default when exit to pre/post process).
n Last field plus n.
-1 |Previous field.
-n |Last field minus n.
(6,1) Field column (ASC).
(7,0) Field line (ASC).
(8,1) Field length (ASC).
(9,1) Format entry number (ASC).
(10,1) Post process term-key.
(11,2) Type of input:
" " |Input all data element types.
"K" |Input only KEY type data elements. MUST SET
SPARM$[10](12,1)="".
"N" |Input all non-key fields. MUST SET SPARM$[10](12,1)="".
(12,2) First time flag:

First time flag.

"X" |Re-entry.

170
Copyright © 2021 Thoroughbred Software International, Inc




(13,2) Not used.

(14,1) Line number offset.

(15,2) Offset count limit.

(16,1) Replace/Print data in DATAS$ [Y or NJ.

(17,1) Get occurrence window home position in next two bytes [Y or N].

(18,1) Occurrence window home column (binary).

(19,2) Occurrence window home line (binary).

(20,8) Screen window name (if blank use screen name).

(28,8) Screen window name actually created (different from
SPARM$[10](20,8) if a window with that name already exists).

SA$[11] [BINPUT screen input data element list (format entry numbers).
SA$[12] [BINPUT pre processing data element list (format entry numbers).
SA$[13] [BINPUT post processing data element list (format entry numbers).
SA$[14] [Not used.
SA$[15] [Not used.
SA$[16] [Not used.
SA$[17] |[BTEXTF key of data record for corresponding text record. If null, the primary key

value will be constructed based on all fields in the format.
SA$[18] |Not used.
SA$[19] |Link file definition table.
SA$[20] [Not used.
SA$[21] [BPRINT data element list (format entry numbers).
SA$[22] |Text field operations table:

1,2) Text file channel number (binary).

(3,1) Use valid value defaults for window (Y/N).

4,2) Border type:

"N" |None.

"R" |Reverse video line graphic.

"C" |Character.

"G" |Line graphic.

(5,1) Text field ID.

(6,1) Number of lines in window (ASC 1 byte).

(7,1) Number of characters per line in window (ASC 1 byte).
(8,1) Line 1 of window (ASC 1 byte).

171
Copyright © 2021 Thoroughbred Software International, Inc




(9,1) Column 1 of window (ASC 1 byte).

(10,8) Text field window name. If none supplied, window name will be
" TEXT."+sequential number.

SA3[23] |List of CTL values indicating any field input terminated with one of the CTL values,
will be treated as a post process. (STR 2 byte masked :"00").

172
Copyright © 2021 Thoroughbred Software International, Inc



SCREEN$
Purpose  Passes messages that control the behavior of the screen.
Used By CONNECT SCREEN from a method.

Remarks in italics below indicate how the screen behaves in certain circumstances, and are
provided for information.

Contents

SCREENS$[ALL] [Prior to a CONNECT SCREEN directive, SCREEN$ can be dimensioned
to 16 and the values shown below can be set. The values will determine
certain SCREEN characteristics.

SCREENS$[0] Execution status.

If SCREEN$[0]="O03A" and NUM(SCREEN®$[3])=0 on entry, then
SCREENS$[4] contains the secondary key value directly from the sort file,
instead of the display values of the sort fields.

SCREENS$[1] Screen name.

SCREENS$[2] Key of last record edited.

SCREENS$[3] Sort number.

SCREENS$[4] Key value of record to edit.

SCREENS$[5] Format data string upon exit.

SCREENS$[6] Error status upon exit (when "F" option used in [15]) "X"=failed.
SCREENS$[7] CONNECT message.

If "AUTO-EXIT" found in CONNECT message or SCREEN$[15]="F":

1. Set SCREENS$[13]="YY Y".
2. If SCREENS$[4]=""then put key value from format data area into
MSG$[4].

SCREENS$[8] View name for F9.

SCREENS$[9] LET SCREEN[9]=$0102030A0B%
This will only allow entry into elements 1,2,3,10, and 11 as they appear on
the screen.

SCREEN$[10] |Not used.

SCREENS$[11] |Last record read or changed (set after each read and after each record is
successfully added or changed).

SCREENS$[12] |After read method.

173
Copyright © 2021 Thoroughbred Software International, Inc



SCREENS$[13]

On/Off indicators (YN) (space applies defaults):

(1,1) |Exit screen after editing first record. The default is N.

(2,1) |Skip maintenance mode window. The default is N.

(3,1) |Auto key range for views. The default is N.

(4,1) [Skip printing mode. The default is N.

(5,1) |Sort change allowed. The defaultis Y.

(6,1) |Print screen description in window title:

Do not print title.

"C" |Center heading.

"R" |Right justify heading.

"L" |Left justify heading

The defaultis ** **.

(7,1) |Clear key value. The default is N.

(8,1) |Create window with border. The defaultis Y.

(9,1) |Skip F7 Special Functions Menu:

"N" - The Screen Special Functions menu is displayed

"Y" - The user is taken directly to the Help Type toggle menu
without first displaying the Special Functions Menu.

SCREENS$[14]  |Application help code (LLHHHHHHHH).

The user can toggle between Application help, Data help, and General help

by pressing F7 on any field to display the Help type toggle menu.
SCREENS$[15] |[Maintenance modes:

""" |All modes are available.

"A" |Add.

"C" |Change.

"D" |Delete.

“I'"|Inquire.

"F" |Logical screen entry. In this mode, records cannot be added,
changed, or deleted.

If SCREEN$[15]="F" Set SCREENS$[13]="YY Y"

Modes can be used in any combination, except for the "F" mode. For
example, IC starts in inquiry mode and enables only change and inquiry.

An attempt is made to open the file and read using the key value supplied
in SCREENS$[4]. If the file open and read are successful, the data read
from the record is supplied as the default data for screen entry. Otherwise,
format defaults are applied. The screen terminates after the last field is
entered.

174
Copyright © 2021 Thoroughbred Software International, Inc




SCREENS$[16] |[Window disposition on exit:

"N" |Delete screen window before exit. (Default)

"Y" |Do not delete screen window.

"R" |Do not delete screen window on exit, Read and print last record
entered before F9 to View. Do not clear last record on exit.

r"*  |Do not delete screen window, Read and print last record entered
before F9 to view.

175
Copyright © 2021 Thoroughbred Software International, Inc



V$
Purpose  Passes data to a view method from a view.
Used By A view with a view method specified, after a row has been read and before it is displayed.

Contents

V$[0,0] |(1,1) |Length of column attribute entry.

(2,1) [Number of columns used in view.

(3,1) [Number of columns deleted from view.

(4,1) [Number of heading rows in view.

(5,1) |First new column ID.

(6,1) |First new column number.

(7,1) |Second new column ID.

(8,1) |Second new column number.

(9,n) |The new column n ID and number.

V$[0,1] (1,1) |Column 1 window address (column).

(2,1) |Column 1 window address (row).

(3,1) [Column 1 width.

(4,1) |Column 1 data name number. $00$ implies new column.
(5,1) [New column ID.

(6,1) [New column data, built by view method.

V$[0,n] |As V$[0,1] for column n.

176
Copyright © 2021 Thoroughbred Software International, Inc



VIEW$

Purpose  Passes messages that control the behavior of the view.

Used By CONNECT VIEW called from a method.

Contents

VIEWS[ALL] |Prior to a CONNECT VIEW directive, VIEWS$ can be dimensioned to 18
and the values shown below can be set. The values will determine certain
view characteristics.

VIEWS$[0] Execution status.

VIEWS$[1] View name [,link-name]
If view name not found, create view using link specified. If view name not
found and link name not specified, a search for a link using the view name
will be done. If link found using view name, a view will be created with the
same name as found link.

VIEWS$[2] Selected key.

VIEWS$[3] Which sort.

VIEWS$[4] Starting key value when view first displayed.

VIEWS$[5] Starting key range allowed while in view.

VIEWS$[6] Ending key range allowed while in view.

VIEWS$[7] CONNECT message. (SORT n, USING [RANGE FROM TO], SELECT
WHEN]|secure SELECT WHEN). See VIEW$[13].

VIEW$[8] Screen name for F9.

VIEWS$[9] Cursor mode:
C Cursor mode.
E Entire field in reverse video (uses view color bar).
F Full row (modes same as E).
P Simulate PRINT VIEW functionality.

VIEW$[10] Carriage return action:
F Field edit.
S Single record maintenance. Return on F4 at maintenance options.
S Same as S except the return is performed after one record is edited.
E Exits and returns current key in entry [2].

VIEWS$[11] Not used.

VIEWS$[12] Not used.

177
Copyright © 2021 Thoroughbred Software International, Inc




VIEWS[13]

On/Off indicators (YN) (space applies defaults):

(1,1) |Key change allowed. The defaultis Y.

(2,1) |Data change allowed. The defaultis Y.

(3,1) |View alterations allowed. The defaultis Y.

(4,1) |Leave view window displayed after exit. The default is N.

(5,1) |Sort change allowed. The defaultis Y.

(6,1) |Exit after view display. The default is N.

(8,1) |Enable secure SELECT WHEN. The default is N.

VIEWS$[14]

Application help code (LLHHHHHH),prompt-msg-help-name.
Note: The comma (,) separating the application help name and the prompt
message help name is required when no application help name is supplied.

VIEWS[15]

Active select condition.

VIEWS[16]

Command processing mode:

(1,2) N |Count

List (same as a view)

Sum

Print (hard copy)

Move

L
S
P
C |Copy
M
D

Delete

¢ |Change

(2,1) |Verify for C,M,D,c (Y/N)

(3,8) |Link name for C,M,D

or

(2,1)  |Verify for C,M,D,c (Y/N)

(3,n)  |Change expression.

(3+n),x) |ICommand description.

or

(2,1) |SUM number elements.

(3,n) |Elements to sum.

(3+n,x)|Command description.

VIEWS[17]

Select and/or change expression CPP'd program.

VIEWS[18]

View FILE-SUFFIX.

VIEWS$[19]

For internal use.

178
Copyright © 2021 Thoroughbred Software International, Inc




VIEWS$[20]

For internal use.

VIEW$[21] user supplied override of the view window size and location, format is:
comma delimited
number of cols for view - defines view width
number of rows for view - defines view height
starting col for view - defines left most position of the view
starting row for view - defines top most position of the view
For example: 60,10,2,3
creates a view window 60 cols (characters) wide, 10 rows high, starting at
col 2 row 3.

VIEWS$[22] Optional View Heading

VIEWS$[23] Optional data name list. View will display only these datanames.
pass as: dnl,dn3,dn3,...dnx
Replace "," with a ";" to signify locked column. Define new/joined columns
with the column id A-Z.

VIEWS$[24] Number of data rows to return. Specifying this option will allow the V$
array to be returned to the calling program populated with all of the view
column data and the number of records specified in this field. The view will
not be displayed on the screen. OO3A will just exit.

For example, if VIEW$[24]="10" then the CONNECT VIEW will not
display the view, instead it will return the 10 rows of data in the v$ array.
The first row would be the first row of data that would be normally be
displayed as defined by all the other parameters in the array that determine
the first row of a view.

VIEWS$[25] Joined column display flag.

N = Do not display joined column data names.
A = Display all data names defined by the joined column Link definition.

VIEWS$[26] RESERVED for internal use to pass joined column information to
command processing method OO3A3.

VIEWS$[27] RESERVED for internal use to pass information to command processing

method OO3A3 for F8-Query option.

179
Copyright © 2021 Thoroughbred Software International, Inc




VIEWS[28]

View heading col/row substitution values:
The first byte defines the substitution set delimiter used in the string. This is
followed by one or more substitution sets:

1 byte substitution value delimiter +
1 byte row number (1,2,3) +

3 byte column number +
substitution text +

delimiter +

1 byte row number (1,2,3) +

3 byte column number +
substitution text +

(next entry)

Accepts any number of substitution values in any sequence.

All substitution values will be padded to column width with trailing spaces.
Unless leading spaces are supplied, substitution headings will be left
aligned. If the substitution values exceed the defined column width, the
substitution value will be truncated. To clear a column heading within a
row, define a substitution value of 1 space. This will be padded to full
column width and have the effect of clearing out the column heading for
that row.

180
Copyright © 2021 Thoroughbred Software International, Inc




VIEWS$[29]

VIP View color settings

Row and column color settings can be supplied in one of two formats:
SETCOLOR syntax or a view color method name. Support for the view
color method provides flexibility for processing complex color rules beyond
the scope of the SETCOLOR syntax.

SETCOLOR syntax

BY ROW:

SETCOLOR foreground+background BY ROW WHEN condition

SETCOLOR WHITE+RED BY ROW WHEN
#OEFCUST.CUST-SALES > 17000

Multiple SETCOLOR commands are supported. Use a ";" to separate
commands.

VIEWS$[29] =

"SETCOLOR WHITE+RED BY ROW WHEN"+
"#OESCUST.CUST-SALES > 15000;"+
"SETCOLOR RED+WHITE BY COL.CUST-CODE

WHEN "+
"OESCUST.CUST-SALES >17000"

Commands are evaluated in order. In the above example an entire row
might display with white text on a red background and with the CUST-
CODE column displayed with red text on a white background.

The color rules are applied each time a row is to be displayed and each time
the user moves off a column after entering data.

For more information please see the SetColor Method earlier in this manual.

VIEWS[30]

Set to an "R" will cause the view to be presented in reverse order from the
selected sort.

181
Copyright © 2021 Thoroughbred Software International, Inc




	Introduction
	Object Technology
	Thoroughbred Mission
	Positioning OPENworkshop
	Object Technology Concepts
	OPENworkshop System Concepts
	The User Interface
	For Developers with DictionaryIV Experience
	OPENworkshop Classes and Methods
	Screens - Introduction
	Communicating Between Classes
	Development Environment
	Getting Started in OPENworkshop
	Bibliography
	OPENworkshop Summary

	Converting from Dictionary-IV
	Differences between Dictionary-IV and OPENworkshop
	Moving to OPENworkshop
	Phase I Changes
	Phase II Changes

	Access to Developer's Facilities
	Menus
	The Library View
	Access Related Objects
	Special Functions
	F10 Key
	F1 Key
	F11 Key
	Help
	Summary of Function Keys and Access Routes

	OPENworkshop Classes
	Presentation Classes
	Data Classes
	CONNECT Directives
	Other Directives

	OPENworkshop Methods
	Types of Methods
	Creating Script Methods
	Data Resources in ScriptIV Methods
	Procedures Section
	Types of Scripts
	Script Execution Environment
	UPDATE Command
	Creating Thoroughbred Basic Methods

	Associated Systems
	Testing and Debugging Environment
	Global Cross Reference System
	Communication with Gateway for Windows
	Security
	Developer Status

	String Arrays
	ARM$
	FA$
	HELP$
	KT$
	LNK$
	MENU$
	PP$
	QUERY$
	REPORT$
	SA$
	SCREEN$
	V$
	VIEW$


